All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 139164 by mathlove last updated on 23/Apr/21
Answered by qaz last updated on 25/Apr/21
ln(1−aeix)=ln[1−a(cosx+isinx)]=ln((1−acosx)2+(asinx)2eitan−1−asinx1−acosx)=12ln(1−2acosx+a2)+itan−1asinxacosx−1...................≪1≫ln(1−aeix)=−∑∞n=1anneinx=−∑∞n=1ann(cosnx+isinnx)......≪2≫≪1≫&≪2≫⇒ln(1−2acosx+a2)=−2∑∞n=1anncosnx−−−−−−−−−−−−−−−−−−−−I=−2∑∞n=1ann∫0πcos(nx)cos2x2dx=−∑∞n=1ann∫0πcos(nx)(cosx+1)dx=−∑∞n=1ann{sin(nx)n∣0π+12∫0πcos[(n+1)x]+cos[(n−1)x]dx}=−∑∞n=1ann{sin(nπ)+12[sin(n+1)xn+1+sin(n−1)xn−1]0π}=−∑∞n=1ann{sin(nπ)+12[sin(n+1)πn+1+sin(n−1)πn−1]}=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com