Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 139164 by mathlove last updated on 23/Apr/21

Answered by qaz last updated on 25/Apr/21

ln(1−ae^(ix) )  =ln[1−a(cos x+isin x)]  =ln((√((1−acos x)^2 +(asin x)^2 ))e^(itan^(−1) ((−asin x)/(1−acos x))) )  =(1/2)ln(1−2acos x+a^2 )+itan^(−1) ((asin x)/(acos x−1))...................≪1≫  ln(1−ae^(ix) )=−Σ_(n=1) ^∞ (a^n /n)e^(inx) =−Σ_(n=1) ^∞ (a^n /n)(cos nx+isin nx)......≪2≫  ≪1≫&≪2≫  ⇒ln(1−2acos x+a^2 )=−2Σ_(n=1) ^∞ (a^n /n)cos nx  −−−−−−−−−−−−−−−−−−−−  I=−2Σ_(n=1) ^∞ (a^n /n)∫_0 ^π cos (nx)cos^2 (x/2)dx  =−Σ_(n=1) ^∞ (a^n /n)∫_0 ^π cos (nx)(cos x+1)dx  =−Σ_(n=1) ^∞ (a^n /n){((sin (nx))/n)∣_0 ^π +(1/2)∫_0 ^π cos [(n+1)x]+cos [(n−1)x]dx}  =−Σ_(n=1) ^∞ (a^n /n){sin (nπ)+(1/2)[((sin (n+1)x)/(n+1))+((sin (n−1)x)/(n−1))]_0 ^π }  =−Σ_(n=1) ^∞ (a^n /n){sin (nπ)+(1/2)[((sin (n+1)π)/(n+1))+((sin (n−1)π)/(n−1))]}  =0

ln(1aeix)=ln[1a(cosx+isinx)]=ln((1acosx)2+(asinx)2eitan1asinx1acosx)=12ln(12acosx+a2)+itan1asinxacosx1...................1ln(1aeix)=n=1anneinx=n=1ann(cosnx+isinnx)......21&2ln(12acosx+a2)=2n=1anncosnxI=2n=1ann0πcos(nx)cos2x2dx=n=1ann0πcos(nx)(cosx+1)dx=n=1ann{sin(nx)n0π+120πcos[(n+1)x]+cos[(n1)x]dx}=n=1ann{sin(nπ)+12[sin(n+1)xn+1+sin(n1)xn1]0π}=n=1ann{sin(nπ)+12[sin(n+1)πn+1+sin(n1)πn1]}=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com