Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 139190 by mathdanisur last updated on 23/Apr/21

a;b∈R , ((∣ax+b∣)/(1+x^2 )) ≤ 1 , ∀x∈R  prove:  ∣a∣≤2 ; ∣b∣≤1

$${a};{b}\in\mathbb{R}\:,\:\frac{\mid{ax}+{b}\mid}{\mathrm{1}+{x}^{\mathrm{2}} }\:\leqslant\:\mathrm{1}\:,\:\forall{x}\in\mathbb{R} \\ $$$${prove}:\:\:\mid{a}\mid\leqslant\mathrm{2}\:;\:\mid{b}\mid\leqslant\mathrm{1} \\ $$

Answered by mitica last updated on 24/Apr/21

x=0⇒∣b∣≤1  x=1⇒∣a+b∣≤2  x=−1⇒∣a−b∣≤2  ∣a∣=∣((2a)/2)∣=((∣a+b+a−b∣)/2)≤((∣a+b∣+∣a−b∣)/2)≤((2+2)/2)=2

$${x}=\mathrm{0}\Rightarrow\mid{b}\mid\leqslant\mathrm{1} \\ $$$${x}=\mathrm{1}\Rightarrow\mid{a}+{b}\mid\leqslant\mathrm{2} \\ $$$${x}=−\mathrm{1}\Rightarrow\mid{a}−{b}\mid\leqslant\mathrm{2} \\ $$$$\mid{a}\mid=\mid\frac{\mathrm{2}{a}}{\mathrm{2}}\mid=\frac{\mid{a}+{b}+{a}−{b}\mid}{\mathrm{2}}\leqslant\frac{\mid{a}+{b}\mid+\mid{a}−{b}\mid}{\mathrm{2}}\leqslant\frac{\mathrm{2}+\mathrm{2}}{\mathrm{2}}=\mathrm{2} \\ $$

Commented by mathdanisur last updated on 24/Apr/21

thank you sir, but ∣b∣≤1? please

$${thank}\:{you}\:{sir},\:{but}\:\mid{b}\mid\leqslant\mathrm{1}?\:{please} \\ $$

Commented by mitica last updated on 24/Apr/21

x=0⇒((∣a∙0+b∣)/(0^2 +1))≤1⇒((∣b∣)/1)≤1⇒∣b∣≤1

$${x}=\mathrm{0}\Rightarrow\frac{\mid{a}\centerdot\mathrm{0}+{b}\mid}{\mathrm{0}^{\mathrm{2}} +\mathrm{1}}\leqslant\mathrm{1}\Rightarrow\frac{\mid{b}\mid}{\mathrm{1}}\leqslant\mathrm{1}\Rightarrow\mid{b}\mid\leqslant\mathrm{1} \\ $$

Answered by mr W last updated on 24/Apr/21

Commented by mr W last updated on 24/Apr/21

let′s generally look at the function  y=x^2 +bx+c  there are three cases.  case 1: y>0 for x∈R  x^2 +bx+c=0 has no real root, i.e.  Δ=b^2 −4c<0  case 2: y≥0 for x∈R  x^2 +bx+c=0 has one double real root, i.e.  Δ=b^2 −4c=0  case 3:  x^2 +bx+c=0 has two real rootx, i.e.  Δ=b^2 −4c>0  y>0 if x<x_1  or x>x_2   y<0 if x_1 <x<x_2   y=0 if x=x_1  or x_2     ⇒such that x^2 +bx+c≥0 for x∈R,  Δ=b^2 −4c≤0

$${let}'{s}\:{generally}\:{look}\:{at}\:{the}\:{function} \\ $$$${y}={x}^{\mathrm{2}} +{bx}+{c} \\ $$$${there}\:{are}\:{three}\:{cases}. \\ $$$${case}\:\mathrm{1}:\:{y}>\mathrm{0}\:{for}\:{x}\in{R} \\ $$$${x}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\:{has}\:{no}\:{real}\:{root},\:{i}.{e}. \\ $$$$\Delta={b}^{\mathrm{2}} −\mathrm{4}{c}<\mathrm{0} \\ $$$${case}\:\mathrm{2}:\:{y}\geqslant\mathrm{0}\:{for}\:{x}\in{R} \\ $$$${x}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\:{has}\:{one}\:{double}\:{real}\:{root},\:{i}.{e}. \\ $$$$\Delta={b}^{\mathrm{2}} −\mathrm{4}{c}=\mathrm{0} \\ $$$${case}\:\mathrm{3}: \\ $$$${x}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\:{has}\:{two}\:{real}\:{rootx},\:{i}.{e}. \\ $$$$\Delta={b}^{\mathrm{2}} −\mathrm{4}{c}>\mathrm{0} \\ $$$${y}>\mathrm{0}\:{if}\:{x}<{x}_{\mathrm{1}} \:{or}\:{x}>{x}_{\mathrm{2}} \\ $$$${y}<\mathrm{0}\:{if}\:{x}_{\mathrm{1}} <{x}<{x}_{\mathrm{2}} \\ $$$${y}=\mathrm{0}\:{if}\:{x}={x}_{\mathrm{1}} \:{or}\:{x}_{\mathrm{2}} \\ $$$$ \\ $$$$\Rightarrow{such}\:{that}\:{x}^{\mathrm{2}} +{bx}+{c}\geqslant\mathrm{0}\:{for}\:{x}\in{R}, \\ $$$$\Delta={b}^{\mathrm{2}} −\mathrm{4}{c}\leqslant\mathrm{0} \\ $$

Commented by mr W last updated on 24/Apr/21

((∣ax+b∣)/(1+x^2 ))≤1 for x∈R  ⇒ −1≤((ax+b)/(1+x^2 ))≤1  ⇒ −1−x^2 ≤ax+b≤1+x^2     1) ax+b≤1+x^2   x^2 −ax+1−b≥0  Δ=a^2 +4(b−1)≤0   ...(i)  4(b−1)≤0  ⇒b≤1  2) −1−x^2 ≤ax+b  x^2 +ax+b+1≥0     Δ=a^2 −4(b+1)≤0   ...(ii)  4(b+1)≥a^2 ≥0  ⇒b≥−1  ⇒−1≤b≤1  ⇒∣b∣≤1  (i)+(ii):  2a^2 −4−4≤0  a^2 ≤4  ⇒∣a∣≤2

$$\frac{\mid{ax}+{b}\mid}{\mathrm{1}+{x}^{\mathrm{2}} }\leqslant\mathrm{1}\:{for}\:{x}\in{R} \\ $$$$\Rightarrow\:−\mathrm{1}\leqslant\frac{{ax}+{b}}{\mathrm{1}+{x}^{\mathrm{2}} }\leqslant\mathrm{1} \\ $$$$\Rightarrow\:−\mathrm{1}−{x}^{\mathrm{2}} \leqslant{ax}+{b}\leqslant\mathrm{1}+{x}^{\mathrm{2}} \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:{ax}+{b}\leqslant\mathrm{1}+{x}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} −{ax}+\mathrm{1}−{b}\geqslant\mathrm{0} \\ $$$$\Delta={a}^{\mathrm{2}} +\mathrm{4}\left({b}−\mathrm{1}\right)\leqslant\mathrm{0}\:\:\:...\left({i}\right) \\ $$$$\mathrm{4}\left({b}−\mathrm{1}\right)\leqslant\mathrm{0} \\ $$$$\Rightarrow{b}\leqslant\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:−\mathrm{1}−{x}^{\mathrm{2}} \leqslant{ax}+{b} \\ $$$${x}^{\mathrm{2}} +{ax}+{b}+\mathrm{1}\geqslant\mathrm{0}\:\:\: \\ $$$$\Delta={a}^{\mathrm{2}} −\mathrm{4}\left({b}+\mathrm{1}\right)\leqslant\mathrm{0}\:\:\:...\left({ii}\right) \\ $$$$\mathrm{4}\left({b}+\mathrm{1}\right)\geqslant{a}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\Rightarrow{b}\geqslant−\mathrm{1} \\ $$$$\Rightarrow−\mathrm{1}\leqslant{b}\leqslant\mathrm{1} \\ $$$$\Rightarrow\mid{b}\mid\leqslant\mathrm{1} \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$$\mathrm{2}{a}^{\mathrm{2}} −\mathrm{4}−\mathrm{4}\leqslant\mathrm{0} \\ $$$${a}^{\mathrm{2}} \leqslant\mathrm{4} \\ $$$$\Rightarrow\mid{a}\mid\leqslant\mathrm{2} \\ $$

Commented by mathdanisur last updated on 24/Apr/21

Perfect Sir thanks..  How can this be Sir pliase..  if: a;b∈R, ∣ax^3 +bx∣≤1, ∀∣x∣≤1  prov: ∣bx^3 +ax∣≤1, ∣3ax^2 +b∣≤9, ∀∣x∣≤1

$${Perfect}\:{Sir}\:{thanks}.. \\ $$$${How}\:{can}\:{this}\:{be}\:{Sir}\:{pliase}.. \\ $$$${if}:\:{a};{b}\in\mathbb{R},\:\mid{ax}^{\mathrm{3}} +{bx}\mid\leqslant\mathrm{1},\:\forall\mid{x}\mid\leqslant\mathrm{1} \\ $$$${prov}:\:\mid{bx}^{\mathrm{3}} +{ax}\mid\leqslant\mathrm{1},\:\mid\mathrm{3}{ax}^{\mathrm{2}} +{b}\mid\leqslant\mathrm{9},\:\forall\mid{x}\mid\leqslant\mathrm{1} \\ $$

Commented by mr W last updated on 24/Apr/21

please open a new thread for this   new question!

$${please}\:{open}\:{a}\:{new}\:{thread}\:{for}\:{this}\: \\ $$$${new}\:{question}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com