Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 139193 by EnterUsername last updated on 23/Apr/21

Σ_(m=1) ^(32) (3m+2)(Σ_(n=1) ^(10) (sin(((2nπ)/(11)))−icos(((2nπ)/(11)))))^m =  (A) 4(1−i)                    (B) 12(1+i)  (C) 12(1−i)                  (D) 48(1−i)

32m=1(3m+2)(10n=1(sin(2nπ11)icos(2nπ11)))m=(A)4(1i)(B)12(1+i)(C)12(1i)(D)48(1i)

Answered by qaz last updated on 24/Apr/21

sin (((2nπ)/(11)))−icos (((2nπ)/(11)))  =(1/i){isin (((2nπ)/(11)))+cos (((2nπ)/(11)))}  =(1/i)∙e^(i((2nπ)/(11))) =(1/i)∙e^(((2πi)/(11))n)   Σ_(n=1) ^(10) {sin (((2nπ)/(11)))−icos (((2nπ)/(11)))}=(1/i)Σ_(n=1) ^(10) e^(((2πi)/(11))n) =(1/i)∙((e^((2πi)/(11)) (1−e^(((2πi)/(11))∙10) ))/(1−e^((2πi)/(11)) ))  =(1/i)∙((e^((2πi)/(11)) (e^(((2πi)/(11))∙11) −e^(((2πi)/(11))∙10) ))/(1−e^((2πi)/(11)) ))=(1/i)∙(−1)∙e^(((2πi)/(11))+((2πi)/(11))∙10) =ie^(2πi) =i  Σ_(m=1) ^(32) (3m+2)(Σ_(n=1) ^(10) (sin(((2nπ)/(11)))−icos(((2nπ)/(11)))))^m   =Σ_(m=1) ^(32) (3m+2)∙i^m =3Σ_(m=1) ^(32) m∙i^m +2Σ_(m=1) ^(32) i^m   =3(i+2i^2 +3i^3 +4i^4 +5i^5 +6i^6 +7i^7 +...+32i^(32) )  =3{i(1−3+5−7+...+29−31)−(2−4+6−8+...+30−32)}  =3{i(−2)×8−(−2)×8}  =−48(i−1)

sin(2nπ11)icos(2nπ11)=1i{isin(2nπ11)+cos(2nπ11)}=1iei2nπ11=1ie2πi11n10n=1{sin(2nπ11)icos(2nπ11)}=1i10n=1e2πi11n=1ie2πi11(1e2πi1110)1e2πi11=1ie2πi11(e2πi1111e2πi1110)1e2πi11=1i(1)e2πi11+2πi1110=ie2πi=i32m=1(3m+2)(10n=1(sin(2nπ11)icos(2nπ11)))m=32m=1(3m+2)im=332m=1mim+232m=1im=3(i+2i2+3i3+4i4+5i5+6i6+7i7+...+32i32)=3{i(13+57+...+2931)(24+68+...+3032)}=3{i(2)×8(2)×8}=48(i1)

Commented by EnterUsername last updated on 24/Apr/21

Thank you Sir

ThankyouSir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com