Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 139254 by mathdanisur last updated on 25/Apr/21

Given a convex hexagon ABCDEG  satisfy: AB=BC, CD=DE, EF=FA.  Suppose △ACE is a right triangle.  (((BC)/(BE))+((DE)/(DA))+((FA)/(FC)))_(min) =?

GivenaconvexhexagonABCDEGsatisfy:AB=BC,CD=DE,EF=FA.SupposeACEisarighttriangle.(BCBE+DEDA+FAFC)min=?

Answered by mr W last updated on 27/Apr/21

Commented by mr W last updated on 27/Apr/21

BC=(√(a^2 +p^2 ))  BE=(√(a^2 +(2b+p)^2 ))  P=((BE)/(BC))=((√(a^2 +(2b+p)^2 ))/( (√(a^2 +p^2 ))))=((√(1+(((2b)/a)+(p/a))^2 ))/( (√(1+((p/a))^2 ))))  let x=(p/a), λ=(b/a)  P=((√(1+(2λ+x)^2 ))/( (√(1+x^2 ))))  (dP/dx)=((2(2λ+x))/(2(√(1+(2λ+x)^2 ))(√(1+x^2 ))))−((2x(√(1+(2λ+x)^2 )))/(2(1+x^2 )(√(1+x^2 ))))=0  (((2λ+x))/( (√(1+(2λ+x)^2 ))))=((x(√(1+(2λ+x)^2 )))/((1+x^2 )))  (1+x^2 )(2λ+x)=x[1+(2λ+x)^2 ]  x^2 +2λx−1=0  x=(√(λ^2 +1))−λ=1 for λ=(b/a)=1  P_(max) =((√(1+(2+1)^2 ))/( (√(1+1))))=(√5)  (((BC)/(BE)))_(min) =(1/P_(max) )=(1/( (√5)))  similarly  (((DE)/(DA)))_(min) =(1/( (√5)))  with b=a, c=(√2)a  FA=(√(c^2 +r^2 ))  FC=c+r  S=((FA)/(FC))=((√(c^2 +r^2 ))/(c+r))=((√(1+((r/c))^2 ))/(1+(r/c)))  y=(r/c)  S=((√(1+y^2 ))/(1+y))  (dS/dy)=((2y)/(2(√(1+y^2 ))(1+y)))−((√(1+y^2 ))/((1+y)^2 ))=0  (y/( (√(1+y^2 ))))=((√(1+y^2 ))/(1+y))  y^2 +y=1+y^2   y=1  S_(min) =((√(1+1^2 ))/(1+1))=(1/( (√2)))  (((BC)/(BE))+((DE)/(DA))+((FA)/(FC)))_(min) =(1/( (√5)))+(1/( (√5)))+(1/( (√2)))=((2(√2)+(√5))/( (√(10))))

BC=a2+p2BE=a2+(2b+p)2P=BEBC=a2+(2b+p)2a2+p2=1+(2ba+pa)21+(pa)2letx=pa,λ=baP=1+(2λ+x)21+x2dPdx=2(2λ+x)21+(2λ+x)21+x22x1+(2λ+x)22(1+x2)1+x2=0(2λ+x)1+(2λ+x)2=x1+(2λ+x)2(1+x2)(1+x2)(2λ+x)=x[1+(2λ+x)2]x2+2λx1=0x=λ2+1λ=1forλ=ba=1Pmax=1+(2+1)21+1=5(BCBE)min=1Pmax=15similarly(DEDA)min=15withb=a,c=2aFA=c2+r2FC=c+rS=FAFC=c2+r2c+r=1+(rc)21+rcy=rcS=1+y21+ydSdy=2y21+y2(1+y)1+y2(1+y)2=0y1+y2=1+y21+yy2+y=1+y2y=1Smin=1+121+1=12(BCBE+DEDA+FAFC)min=15+15+12=22+510

Commented by mathdanisur last updated on 30/Apr/21

thankyou sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com