Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 139257 by bobhans last updated on 25/Apr/21

    Σ_(k=1) ^∞  (((−1)^k (2k−1))/k^2 ) =?

$$\:\:\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} \left(\mathrm{2k}−\mathrm{1}\right)}{\mathrm{k}^{\mathrm{2}} }\:=? \\ $$

Answered by john_santu last updated on 25/Apr/21

    Σ_(k=1) ^∞  (((2k−1)(−1)^k )/k^2 ) = Σ_(k=1) ^∞  ((2(−1)^k )/k)−Σ_(k=1) ^∞ (((−1)^(k+1) )/k^2 )  = −2ln 2 −( Σ_(k=1) ^∞  (1/k^2 )−2Σ_(k=1) ^∞  (1/((2k)^2 )))  =−2ln 2 −(−(1/2)Σ_(k=1) ^∞  (1/k^2 ))  =−2ln 2+(1/2).(π^2 /6)  =(π^2 /(12))−2ln 2

$$\:\:\:\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(\mathrm{2}{k}−\mathrm{1}\right)\left(−\mathrm{1}\right)^{{k}} }{{k}^{\mathrm{2}} }\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{2}\left(−\mathrm{1}\right)^{{k}} }{{k}}−\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{{k}^{\mathrm{2}} } \\ $$$$=\:−\mathrm{2ln}\:\mathrm{2}\:−\left(\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }−\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{2}{k}\right)^{\mathrm{2}} }\right) \\ $$$$=−\mathrm{2ln}\:\mathrm{2}\:−\left(−\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\right) \\ $$$$=−\mathrm{2ln}\:\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}.\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\mathrm{2ln}\:\mathrm{2}\: \\ $$

Answered by mathmax by abdo last updated on 25/Apr/21

S=Σ_(n=1) ^∞  (((−1)^n (2n−1))/n^2 ) =2Σ_(n=1) ^∞  (((−1)^n )/n)−Σ_(n=1) ^∞  (((−1)^n )/n^2 )  we have Σ_(n=1) ^∞  (((−1)^n )/n)=−log2  and Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(2^(1−2) −1)ξ(2)=−(1/2).(π^2 /6)=−(π^2 /(12)) ⇒  S =−2log2+(π^2 /(12))

$$\mathrm{S}=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \left(\mathrm{2n}−\mathrm{1}\right)}{\mathrm{n}^{\mathrm{2}} }\:=\mathrm{2}\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}}−\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} } \\ $$$$\mathrm{we}\:\mathrm{have}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}}=−\mathrm{log2} \\ $$$$\mathrm{and}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} }\:=\left(\mathrm{2}^{\mathrm{1}−\mathrm{2}} −\mathrm{1}\right)\xi\left(\mathrm{2}\right)=−\frac{\mathrm{1}}{\mathrm{2}}.\frac{\pi^{\mathrm{2}} }{\mathrm{6}}=−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\:\Rightarrow \\ $$$$\mathrm{S}\:=−\mathrm{2log2}+\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com