Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 139402 by mathmax by abdo last updated on 26/Apr/21

calculate ∫_0 ^∞  ((log^2 x)/(x^2  +x+1))dx

calculate0log2xx2+x+1dx

Answered by mathmax by abdo last updated on 29/Apr/21

let f(a)=∫_0 ^∞  ((x^a logx)/(x^2  +x+1))dx ⇒f(a)=∫_0 ^∞  ((e^(alogx)  logx)/(x^2  +x+1))dx  ⇒f^′ (a)=∫_0 ^∞   ((x^a  log^2 x)/(x^2  +x+1))dx ⇒f^′ (o)=∫_0 ^∞  ((log^2 x)/(x^2  +x+1))dx  f(a)=−(1/2)Re(Σ Res(ϕ a_i ) )withϕ(z)=(z^a /(z^2  +z+1))log^2 z  we have ϕ(z)=((z^a log^2 z)/((z−e^((2iπ)/3) )(z−e^(−((2iπ)/3)) )))  Res(ϕ,e^((2iπ)/3) ) =((e^((2iπa)/3)  (((2iπ)/3))^2 )/(2isin(((2π)/3)))) =−((4π^2 )/(9(i(√3))))e^((2iπa)/3)  =−((4π^2 )/(9i(√3))) e^((2iπa)/3)   Res(ϕ,e^(−((2iπ)/3)) ) =((e^(−((2iπa)/3)) (−((2iπ)/3))^2 )/((−2isin(((2π)/3)))))=−((4π^2 )/(9(−i(√3))))e^(−((2iπa)/3))  =((4π^2 )/(9i(√3)))e^(−((2iπa)/3))   ⇒Σ Res(ϕ  z_i )=−((4π^2 )/(9i(√3))){ e^((2iπa)/3) −e^(−((2iπa)/3)) }  =−((4π^2 )/(9i(√3)))(2i sin(((2πa)/3)) =−((8π^2 )/(9(√3)))sin(((2πa)/3)) ⇒  f(a) =((4π^2 )/(9(√3)))sin(((2πa)/3)) ⇒f^′ (a) =((4π^2 )/(9(√3)))×((2π)/3)cos(((2πa)/3))  =((8π^3 )/(27(√3))) cos(((2πa)/3)) ⇒f^′ (0)=((8π^3 )/(27(√3)))  ⇒  ∫_0 ^∞   ((log^2 x)/(x^2  +x+1))dx =((8π^3 )/(27(√3)))

letf(a)=0xalogxx2+x+1dxf(a)=0ealogxlogxx2+x+1dxf(a)=0xalog2xx2+x+1dxf(o)=0log2xx2+x+1dxf(a)=12Re(ΣRes(φai))withφ(z)=zaz2+z+1log2zwehaveφ(z)=zalog2z(ze2iπ3)(ze2iπ3)Res(φ,e2iπ3)=e2iπa3(2iπ3)22isin(2π3)=4π29(i3)e2iπa3=4π29i3e2iπa3Res(φ,e2iπ3)=e2iπa3(2iπ3)2(2isin(2π3))=4π29(i3)e2iπa3=4π29i3e2iπa3ΣRes(φzi)=4π29i3{e2iπa3e2iπa3}=4π29i3(2isin(2πa3)=8π293sin(2πa3)f(a)=4π293sin(2πa3)f(a)=4π293×2π3cos(2πa3)=8π3273cos(2πa3)f(0)=8π32730log2xx2+x+1dx=8π3273

Terms of Service

Privacy Policy

Contact: info@tinkutara.com