All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 139402 by mathmax by abdo last updated on 26/Apr/21
calculate∫0∞log2xx2+x+1dx
Answered by mathmax by abdo last updated on 29/Apr/21
letf(a)=∫0∞xalogxx2+x+1dx⇒f(a)=∫0∞ealogxlogxx2+x+1dx⇒f′(a)=∫0∞xalog2xx2+x+1dx⇒f′(o)=∫0∞log2xx2+x+1dxf(a)=−12Re(ΣRes(φai))withφ(z)=zaz2+z+1log2zwehaveφ(z)=zalog2z(z−e2iπ3)(z−e−2iπ3)Res(φ,e2iπ3)=e2iπa3(2iπ3)22isin(2π3)=−4π29(i3)e2iπa3=−4π29i3e2iπa3Res(φ,e−2iπ3)=e−2iπa3(−2iπ3)2(−2isin(2π3))=−4π29(−i3)e−2iπa3=4π29i3e−2iπa3⇒ΣRes(φzi)=−4π29i3{e2iπa3−e−2iπa3}=−4π29i3(2isin(2πa3)=−8π293sin(2πa3)⇒f(a)=4π293sin(2πa3)⇒f′(a)=4π293×2π3cos(2πa3)=8π3273cos(2πa3)⇒f′(0)=8π3273⇒∫0∞log2xx2+x+1dx=8π3273
Terms of Service
Privacy Policy
Contact: info@tinkutara.com