All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 139427 by Fikret last updated on 26/Apr/21
∫322x2−2dx+∫40x2+2dx=?
Answered by MJS_new last updated on 27/Apr/21
∫x2−2dx=[t=x+x2−22→dx=2(x2−2)x+x2−2dt]=∫(t2−1t+12t3)dt==t4−14t2−lnt==12xx2−2−ln(x+x2−2)+C1∫x2+2dx=[u=x+x2+22→dx=2(x2+2)x+x2+2du]=∫(u2+1u+12u3)dt==u4−14u2+lnu==12xx2+2−ln(x+x2+2)+C2⇒answeris122
Answered by mathmax by abdo last updated on 27/Apr/21
I=H+KH=∫232x2−2dx=x=2cht→t=argch(x2)∫argch(1)argch(3)2sht.2shtdt=2∫0ln(3+22)ch(2t)−12dt=[sh(2t)2]0ln(3+22)−ln(3+22)=12[e2t−e−2t2]0ln(3+22)−ln(3+22)=14{(3+22)2−(3+22)−2}−ln(3+22)K=∫04x2+2dx=x=2sh(t)→t=argsh(x2)∫0argsh(42)2ch(t)2ch(t)=2∫0ln(42+3)1+ch(2t)2dt=ln(42+3)+[12sh(2t)]0ln(3+22)=ln(3+22)+14{(3+22)2−(3+22)−2}⇒I=12{(3+22)2−(3+22)−2}−ln(3+22)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com