Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 139427 by Fikret last updated on 26/Apr/21

∫_( (√2)) ^(3(√2)) (√(x^2 −2))dx+∫_0 ^4 (√(x^2 +2))dx =?

322x22dx+40x2+2dx=?

Answered by MJS_new last updated on 27/Apr/21

∫(√(x^2 −2))dx=       [t=((x+(√(x^2 −2)))/( (√2))) → dx=((√(2(x^2 −2)))/(x+(√(x^2 −2))))dt]  =∫((t/2)−(1/t)+(1/(2t^3 )))dt=  =((t^4 −1)/(4t^2 ))−ln t =  =(1/2)x(√(x^2 −2))−ln (x+(√(x^2 −2))) +C_1   ∫(√(x^2 +2))dx=       [u=((x+(√(x^2 +2)))/( (√2))) → dx=((√(2(x^2 +2)))/(x+(√(x^2 +2))))du]  =∫((u/2)+(1/u)+(1/(2u^3 )))dt=  =((u^4 −1)/(4u^2 ))+ln u =  =(1/2)x(√(x^2 +2))−ln (x+(√(x^2 +2))) +C_2   ⇒ answer is 12(√2)

x22dx=[t=x+x222dx=2(x22)x+x22dt]=(t21t+12t3)dt==t414t2lnt==12xx22ln(x+x22)+C1x2+2dx=[u=x+x2+22dx=2(x2+2)x+x2+2du]=(u2+1u+12u3)dt==u414u2+lnu==12xx2+2ln(x+x2+2)+C2answeris122

Answered by mathmax by abdo last updated on 27/Apr/21

I = H +K  H =∫_(√2) ^(3(√2)) (√(x^2 −2))dx =_(x=(√2)cht→t=argch((x/( (√2)))))   ∫_(argch(1)) ^(argch(3)) (√2)sht .(√2)sht dt  =2 ∫_0 ^(ln(3+2(√2))) ((ch(2t)−1)/2)dt=[((sh(2t))/2)]_0 ^(ln(3+2(√2)))  −ln(3+2(√2))  =(1/2)[((e^(2t) −e^(−2t) )/2)]_0 ^(ln(3+2(√2))) −ln(3+2(√2)) =(1/4){(3+2(√2))^2 −(3+2(√2))^(−2) }  −ln(3+2(√2))  K =∫_0 ^4  (√(x^2 +2))dx =_(x=(√2)sh(t)→t=argsh((x/( (√2)))))   ∫_0 ^(argsh((4/( (√2))))) (√2)ch(t)(√2)ch(t)  =2 ∫_0 ^(ln((4/( (√2)))+3))  ((1+ch(2t))/2)dt =ln((4/( (√2)))+3)+[(1/2)sh(2t)]_0 ^(ln(3+2(√2)))   =ln(3+2(√2))+(1/4){(3+2(√2))^2 −(3+2(√2))^(−2) } ⇒  I =(1/2){(3+2(√2))^2 −(3+2(√2))^(−2) }−ln(3+2(√2))

I=H+KH=232x22dx=x=2chtt=argch(x2)argch(1)argch(3)2sht.2shtdt=20ln(3+22)ch(2t)12dt=[sh(2t)2]0ln(3+22)ln(3+22)=12[e2te2t2]0ln(3+22)ln(3+22)=14{(3+22)2(3+22)2}ln(3+22)K=04x2+2dx=x=2sh(t)t=argsh(x2)0argsh(42)2ch(t)2ch(t)=20ln(42+3)1+ch(2t)2dt=ln(42+3)+[12sh(2t)]0ln(3+22)=ln(3+22)+14{(3+22)2(3+22)2}I=12{(3+22)2(3+22)2}ln(3+22)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com