Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 139455 by mnjuly1970 last updated on 27/Apr/21

       # calculus#    evaluate:    𝛗:=Σ_(k=1) ^∞ (((−1)^(k−1)  Γ ((k/2)))/(k Γ(((k+1)/2)))) =?

You can't use 'macro parameter character #' in math modeevaluate:ϕ:=k=1(1)k1Γ(k2)kΓ(k+12)=?

Answered by Dwaipayan Shikari last updated on 27/Apr/21

Σ_(k=1) ^∞ (((−1)^(k+1) Γ((k/2)))/(kΓ(((k+1)/2))))=(1/( (√π)))Σ_(k=1) ^∞ (−1)^(k+1) (1/k)∫_0 ^1 x^((k/2)−1) (1−x)^(−(1/2)) dx  =(1/( (√π)))∫_0 ^1 ((log(1+(√x)))/(x(√(1−x))))dx=(2/( (√π)))∫_0 ^1 ((log(1+u))/(u(√(1−u^2 ))))du=(2/( (√π)))∫_0 ^(π/2) ((log(1+sinθ))/(sinθ))dθ  =(2/( (√π)))ς(1)  ς(g)=∫_0 ^(π/2) ((log(1+gsinθ))/(sinθ))dθ⇒ς′(g)=∫_0 ^(π/2) (1/(1+gsinθ))dθ  =2∫_0 ^1 (1/(1+((2gt)/(1+t^2 )))).(1/(1+t^2 ))dt=2∫_0 ^1 (1/((t+g)^2 +((√(1−g^2 )))^2 ))dt=(2/( (√(1−g^2 ))))(tan^(−1) (√((1+g)/(1−g)))−tan^(−1) (g/( (√(1−g^2 )))))  ς(g)=2∫(1/( (√(1−g^2 ))))tan^(−1) (√((1+g)/(1−g))) dg−(2/( (√(1−g^2 ))))tan^(−1) (g/( (√(1−g^2 ))))  =2∫(1/( (√(1−g^2 ))))tan^(−1) (((1+g−g)/( (√(1−g^2 ))))/(1+((g+g^2 )/(1−g^2 ))))dg=2∫(1/( (√(1−g^2 ))))tan^(−1) ((√(1−g^2 ))/(1+g))dg  g=cosζ  ⇒2∫((−sinζ)/(sinζ))tan^(−1) (tan(ζ/2))dζ=−(ζ^2 /2)+C=−(((cos^(−1) (g))^2 )/2)+C  ς(0)=−(π^2 /8)+C=0⇒C=(π^2 /8)  ς(1)=−(0/2)+(π^2 /8)  So (2/( (√π)))∫_0 ^(π/2) ((log(1+sinθ))/(sinθ))dθ=(2/( (√π))).(π^2 /8)=(π^(3/2) /4)

k=1(1)k+1Γ(k2)kΓ(k+12)=1πk=1(1)k+11k01xk21(1x)12dx=1π01log(1+x)x1xdx=2π01log(1+u)u1u2du=2π0π2log(1+sinθ)sinθdθ=2πς(1)ς(g)=0π2log(1+gsinθ)sinθdθς(g)=0π211+gsinθdθ=20111+2gt1+t2.11+t2dt=2011(t+g)2+(1g2)2dt=21g2(tan11+g1gtan1g1g2)ς(g)=211g2tan11+g1gdg21g2tan1g1g2=211g2tan11+gg1g21+g+g21g2dg=211g2tan11g21+gdgg=cosζ2sinζsinζtan1(tanζ2)dζ=ζ22+C=(cos1(g))22+Cς(0)=π28+C=0C=π28ς(1)=02+π28So2π0π2log(1+sinθ)sinθdθ=2π.π28=π3/24

Commented by mnjuly1970 last updated on 27/Apr/21

thanks alot mr payan...

thanksalotmrpayan...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com