All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 139474 by mathdanisur last updated on 27/Apr/21
let:Ωn=∫2π0cos(x)⋅cos(2x)⋅...⋅cos(nx)dxforwhichintegersn,1⩽n⩽10,isΩn≠0?
Answered by mathmax by abdo last updated on 28/Apr/21
Φn=∫0πcosx.cos(2x)....cos(nx)dx+∫π2πcosxcos(2x)....cos(nx)dx(→x=π+t)=∫0πcosx.cos(2x)...cos(nx)dx+∫0πcos(π+t).cos(π+2t)...cos(nπ+nt)dt=∫0π∏k=1ncos(kx)dx+∫0π∏k=1ncos(kπ+kx)dx=∫0π∏k=1ncos(kx)dx+∫0π∏k=1n(−1)kcos(kx)dx=∫0π∏k=1ncos(kx)dx+(−1)n(n+1)2∫0π∏k=1ncos(kx)dx=(1+(−1)n(n+1)2)∫0π∏k=1ncos(kx)dxsoΦn≠0⇒1+(−1)n(n+1)2≠0and∫0πcos(x).cos(2x)...cos(nx)dx≠0....becontinued...
Commented by mathdanisur last updated on 30/Apr/21
thankssir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com