Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 139474 by mathdanisur last updated on 27/Apr/21

let:  Ω_n =∫_( 0) ^( 2π) cos(x)∙cos(2x)∙...∙cos(nx) dx  for which integers n, 1≤n≤10, is Ω_n ≠0?

let:Ωn=2π0cos(x)cos(2x)...cos(nx)dxforwhichintegersn,1n10,isΩn0?

Answered by mathmax by abdo last updated on 28/Apr/21

Φ_n =∫_0 ^π  cosx.cos(2x)....cos(nx)dx +∫_π ^(2π)  cosx cos(2x)....cos(nx)dx  (→x=π+t) =∫_0 ^π  cosx.cos(2x)...cos(nx)dx+∫_0 ^π cos(π+t).cos(π+2t)...cos(nπ+nt)dt  =∫_0 ^π  Π_(k=1) ^n  cos(kx)dx +∫_0 ^π  Π_(k=1) ^n  cos(kπ +kx)dx  =∫_0 ^π  Π_(k=1) ^n  cos(kx)dx+∫_0 ^π  Π_(k=1) ^n  (−1)^k  cos(kx)dx  =∫_0 ^π  Π_(k=1) ^n  cos(kx)dx +(−1)^((n(n+1))/2)  ∫_0 ^π  Π_(k=1) ^n  cos(kx)dx  =(1+(−1)^((n(n+1))/2) )∫_0 ^π  Π_(k=1) ^n  cos(kx)dx so Φ_n ≠0 ⇒  1+(−1)^((n(n+1))/2)  ≠0 and ∫_0 ^π cos(x).cos(2x)...cos(nx)dx ≠0  ....be continued...

Φn=0πcosx.cos(2x)....cos(nx)dx+π2πcosxcos(2x)....cos(nx)dx(x=π+t)=0πcosx.cos(2x)...cos(nx)dx+0πcos(π+t).cos(π+2t)...cos(nπ+nt)dt=0πk=1ncos(kx)dx+0πk=1ncos(kπ+kx)dx=0πk=1ncos(kx)dx+0πk=1n(1)kcos(kx)dx=0πk=1ncos(kx)dx+(1)n(n+1)20πk=1ncos(kx)dx=(1+(1)n(n+1)2)0πk=1ncos(kx)dxsoΦn01+(1)n(n+1)20and0πcos(x).cos(2x)...cos(nx)dx0....becontinued...

Commented by mathdanisur last updated on 30/Apr/21

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com