All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 139476 by aliibrahim1 last updated on 27/Apr/21
Answered by qaz last updated on 27/Apr/21
I=∫dxx(x+1)(x+2)...(x+n)f(x)=1x(x+1)(x+2)...(x+n)=A0x+A1x+1+A2x+2+...+Anx+nA0=limx→0xf(x)=1n!A1=limx→−1(x+1)f(x)=1(−1)(n−1)!A2=limx→−2(x+2)f(x)=1(−2)(−1)(n−2)!....An=limx→−n(x+n)f(x)=1(−n)(−n+1)(−n+2)⋅...⋅2⋅1I=ln∣x∣n!−ln∣x+1∣(n−1)!+ln∣x+2∣2!(n−2)!−..+(−1)k⋅ln∣x+k∣k!(n−k)!+...+(−1)nln∣x+n∣n!C=∑nk=0(−1)kln∣x+k∣k!(n−k)!+C
Commented by aliibrahim1 last updated on 27/Apr/21
thxsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com