All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 139478 by mnjuly1970 last updated on 27/Apr/21
.........nice.........calculus........Φ:=∫01ln(1+x2)x2−1dx=π224NOTE::li2(z)+li2(1−z)=π26−ln(z)ln(1−z)Hence::li2(12)=π212−12ln2(2)Φ:=⟨1+x2=y⟩2∫121ln(y)4y2−4ydy:=12∫121ln(y)y(y−1)dy=12∫121{ln(y)y−1−ln(y)y}dy:=−12[12ln2(y)]121+12{li2(1)−li2(12)}:=14ln2(2)+π212+12(−π212−12ln2(2))Φ:=π224
Terms of Service
Privacy Policy
Contact: info@tinkutara.com