Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 139478 by mnjuly1970 last updated on 27/Apr/21

                      ......... nice ... ... ... calculus........        Φ:=∫_0 ^( 1) ((ln(((1+x)/2)))/(x^2 −1))dx=(π^2 /(24))         NOTE :: li_2 (z)+li_2 (1−z)=(π^2 /6)−ln(z)ln(1−z)           Hence ::  li_2 ((1/2))=(π^2 /(12))−(1/2)ln^2 (2)         Φ:=^(⟨ ((1+x)/2)=y ⟩)  2∫_(1/2) ^( 1) ((ln(y))/(4y^2 −4y))dy      :=(1/2)∫_(1/2) ^( 1) ((ln(y))/(y(y−1)))dy=(1/2) ∫_(1/2) ^( 1) {((ln(y))/(y−1))−((ln(y))/y)}dy       :=−(1/2) [(1/2) ln^2 (y)]_((1 )/2) ^1 +(1/2){li_2 (1)−li_2 ((1/2))}         :=(1/4)ln^2 (2)+(π^2 /(12))+(1/2)(−(π^2 /(12))−(1/2)ln^2 (2))                                           Φ:=(π^2 /(24))

.........nice.........calculus........Φ:=01ln(1+x2)x21dx=π224NOTE::li2(z)+li2(1z)=π26ln(z)ln(1z)Hence::li2(12)=π21212ln2(2)Φ:=1+x2=y2121ln(y)4y24ydy:=12121ln(y)y(y1)dy=12121{ln(y)y1ln(y)y}dy:=12[12ln2(y)]121+12{li2(1)li2(12)}:=14ln2(2)+π212+12(π21212ln2(2))Φ:=π224

Terms of Service

Privacy Policy

Contact: info@tinkutara.com