Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 139612 by 676597498 last updated on 29/Apr/21

show that  ∫_0 ^( ∞) ((cos((√x)))/(e^(2π(√x)) −1))dx = 1−(e/((e−1)^2 ))

$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left(\sqrt{{x}}\right)}{{e}^{\mathrm{2}\pi\sqrt{{x}}} −\mathrm{1}}{dx}\:=\:\mathrm{1}−\frac{{e}}{\left({e}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Answered by Dwaipayan Shikari last updated on 29/Apr/21

2∫_0 ^∞ u((cos(u))/(e^(2πu) −1))du  =2Σ_(n=1) ^∞ ∫_0 ^∞ ue^(−2πnu) cos(u)du=Σ_(n=1) ^∞ ∫_0 ^∞ ue^(−u(2πn−i)) +ue^(−(2πn+i)) du  =Σ_(n=1) ^∞ (1/((2πn−i)^2 ))+(1/((2πn+i)^2 ))=(1/4)(Σ_(n=−∞) ^∞ (1/((πn+(i/2))^2 ))−(1/(((i/2))^2 )))  =(1/4).(1/(sin^2 ((i/2))))+1=1−(1/((e^(1/2) −e^(−(1/2)) )^2 ))=1−(e/((e−1)^2 ))

$$\mathrm{2}\int_{\mathrm{0}} ^{\infty} {u}\frac{{cos}\left({u}\right)}{{e}^{\mathrm{2}\pi{u}} −\mathrm{1}}{du} \\ $$$$=\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\infty} {ue}^{−\mathrm{2}\pi{nu}} {cos}\left({u}\right){du}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\infty} {ue}^{−{u}\left(\mathrm{2}\pi{n}−{i}\right)} +{ue}^{−\left(\mathrm{2}\pi{n}+{i}\right)} {du} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}\pi{n}−{i}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{2}\pi{n}+{i}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}}\left(\underset{{n}=−\infty} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\pi{n}+\frac{{i}}{\mathrm{2}}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\left(\frac{{i}}{\mathrm{2}}\right)^{\mathrm{2}} }\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}.\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left(\frac{{i}}{\mathrm{2}}\right)}+\mathrm{1}=\mathrm{1}−\frac{\mathrm{1}}{\left({e}^{\frac{\mathrm{1}}{\mathrm{2}}} −{e}^{−\frac{\mathrm{1}}{\mathrm{2}}} \right)^{\mathrm{2}} }=\mathrm{1}−\frac{{e}}{\left({e}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Commented by 676597498 last updated on 29/Apr/21

thanks  pls explain the second line

$${thanks} \\ $$$${pls}\:{explain}\:{the}\:{second}\:{line} \\ $$

Commented by Dwaipayan Shikari last updated on 30/Apr/21

∫_0 ^∞ ue^(−u(2πn−i)) du+ue^(−u(2πn+i)) du    u=(y/((2πn−i)))   u=(k/((2πn+i)))  =(1/((2πn−i)^2 ))∫_0 ^∞ ye^(−y) dy+(1/((2πn+i)^2 ))∫_0 ^∞ ke^(−k) dk  =((Γ(2))/((2πn−i)^2 ))+((Γ(2))/((2πn+i)^2 ))=(1/((2πn−i)^2 ))+(1/((2πn+i)^2 ))

$$\int_{\mathrm{0}} ^{\infty} {ue}^{−{u}\left(\mathrm{2}\pi{n}−{i}\right)} {du}+{ue}^{−{u}\left(\mathrm{2}\pi{n}+{i}\right)} {du}\:\:\:\:{u}=\frac{{y}}{\left(\mathrm{2}\pi{n}−{i}\right)}\:\:\:{u}=\frac{{k}}{\left(\mathrm{2}\pi{n}+{i}\right)} \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{2}\pi{n}−{i}\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} {ye}^{−{y}} {dy}+\frac{\mathrm{1}}{\left(\mathrm{2}\pi{n}+{i}\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} {ke}^{−{k}} {dk} \\ $$$$=\frac{\Gamma\left(\mathrm{2}\right)}{\left(\mathrm{2}\pi{n}−{i}\right)^{\mathrm{2}} }+\frac{\Gamma\left(\mathrm{2}\right)}{\left(\mathrm{2}\pi{n}+{i}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\left(\mathrm{2}\pi{n}−{i}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{2}\pi{n}+{i}\right)^{\mathrm{2}} } \\ $$

Commented by 676597498 last updated on 30/Apr/21

sorry sir i understood this  i meant the third line sir

$${sorry}\:{sir}\:{i}\:{understood}\:{this} \\ $$$${i}\:{meant}\:{the}\:{third}\:{line}\:{sir} \\ $$

Commented by Dwaipayan Shikari last updated on 30/Apr/21

Generally  sinx=xΠ_(n=1) ^∞ (1−(x^2 /(π^2 n^2 )))  log(sinx)=log(x)+Σlog(1−(x/(πn)))+Σlog(1+(x/(πn)))  Differentiate both sides respect to x  ((cosx)/(sinx))=(1/x)+Σ((−(1/(πn)))/(1−(x/(πn))))+Σ((1/(πn))/(1+(x/(πn))))  cotx=(1/x)+Σ_(n=1) ^∞ (1/(x−πn))+Σ_(n=1) ^∞ (1/(x+πn))  cotx=Σ_(n=−∞) ^∞ (1/(x+πn)) ⇒(1/(sin^2 x))=Σ_(n=−∞) ^∞ (1/((x+πn)^2 )) (Differentiate again)

$${Generally} \\ $$$${sinx}={x}\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\pi^{\mathrm{2}} {n}^{\mathrm{2}} }\right) \\ $$$${log}\left({sinx}\right)={log}\left({x}\right)+\Sigma{log}\left(\mathrm{1}−\frac{{x}}{\pi{n}}\right)+\Sigma{log}\left(\mathrm{1}+\frac{{x}}{\pi{n}}\right) \\ $$$${Differentiate}\:{both}\:{sides}\:{respect}\:{to}\:{x} \\ $$$$\frac{{cosx}}{{sinx}}=\frac{\mathrm{1}}{{x}}+\Sigma\frac{−\frac{\mathrm{1}}{\pi{n}}}{\mathrm{1}−\frac{{x}}{\pi{n}}}+\Sigma\frac{\frac{\mathrm{1}}{\pi{n}}}{\mathrm{1}+\frac{{x}}{\pi{n}}} \\ $$$${cotx}=\frac{\mathrm{1}}{{x}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{x}−\pi{n}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{x}+\pi{n}} \\ $$$${cotx}=\underset{{n}=−\infty} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{x}+\pi{n}}\:\Rightarrow\frac{\mathrm{1}}{{sin}^{\mathrm{2}} {x}}=\underset{{n}=−\infty} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({x}+\pi{n}\right)^{\mathrm{2}} }\:\left({Differentiate}\:{again}\right) \\ $$

Commented by mnjuly1970 last updated on 30/Apr/21

thanks alot...

$${thanks}\:{alot}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com