Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 139641 by EnterUsername last updated on 30/Apr/21

Let a, b be non-zero complex numbers and z_1 , z_2  be  the roots of the equation z^2 +az+b=0. If there exists  λ≥4 such that a^2 =λb, then the points z_1 , z_2  and the  origin  (A) form an equilateral triangle  (B) form a right-angled triangle, right angled at the            origin  (C) are collinear  (D) form an obtuse-angled triangle

$$\mathrm{Let}\:{a},\:{b}\:\mathrm{be}\:\mathrm{non}-\mathrm{zero}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{and}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{be} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:{z}^{\mathrm{2}} +{az}+{b}=\mathrm{0}.\:\mathrm{If}\:\mathrm{there}\:\mathrm{exists} \\ $$$$\lambda\geqslant\mathrm{4}\:\mathrm{such}\:\mathrm{that}\:{a}^{\mathrm{2}} =\lambda{b},\:\mathrm{then}\:\mathrm{the}\:\mathrm{points}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{origin} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{form}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{form}\:\mathrm{a}\:\mathrm{right}-\mathrm{angled}\:\mathrm{triangle},\:\mathrm{right}\:\mathrm{angled}\:\mathrm{at}\:\mathrm{the} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{origin} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{are}\:\mathrm{collinear} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{form}\:\mathrm{an}\:\mathrm{obtuse}-\mathrm{angled}\:\mathrm{triangle} \\ $$

Answered by MJS_new last updated on 30/Apr/21

λ≥4 ⇒ λ∈R  let k∈R∧λ=4+k^2   z^2 +az+(a^2 /(4+k^2 ))=0  z=−(a/2)(1±(k/( (√(k^2 +4)))))  1±(k/( (√(k^2 +4))))∈R∀k∈R ⇒ z_1  and z_2  are colinear

$$\lambda\geqslant\mathrm{4}\:\Rightarrow\:\lambda\in\mathbb{R} \\ $$$$\mathrm{let}\:{k}\in\mathbb{R}\wedge\lambda=\mathrm{4}+{k}^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} +{az}+\frac{{a}^{\mathrm{2}} }{\mathrm{4}+{k}^{\mathrm{2}} }=\mathrm{0} \\ $$$${z}=−\frac{{a}}{\mathrm{2}}\left(\mathrm{1}\pm\frac{{k}}{\:\sqrt{{k}^{\mathrm{2}} +\mathrm{4}}}\right) \\ $$$$\mathrm{1}\pm\frac{{k}}{\:\sqrt{{k}^{\mathrm{2}} +\mathrm{4}}}\in\mathbb{R}\forall{k}\in\mathbb{R}\:\Rightarrow\:{z}_{\mathrm{1}} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{colinear} \\ $$

Commented by EnterUsername last updated on 30/Apr/21

Thank you Sir. Can it also be done as           ((z_1 −z_0 )/(z_2 −z_0 ))=cosα+isinα.   Then proving that α=kπ, k∈Z

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}.\:\mathrm{Can}\:\mathrm{it}\:\mathrm{also}\:\mathrm{be}\:\mathrm{done}\:\mathrm{as} \\ $$$$\:\:\:\:\:\:\:\:\:\frac{{z}_{\mathrm{1}} −{z}_{\mathrm{0}} }{{z}_{\mathrm{2}} −{z}_{\mathrm{0}} }=\mathrm{cos}\alpha+\mathrm{isin}\alpha.\: \\ $$$$\mathrm{Then}\:\mathrm{proving}\:\mathrm{that}\:\alpha=\mathrm{k}\pi,\:\mathrm{k}\in\mathbb{Z} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com