Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 139738 by mathsuji last updated on 30/Apr/21

lim_(n→∞) ∫_0 ^1  ((n∙x^n )/(2+x^n )) dx=?

$$\underset{{n}\rightarrow\infty} {{lim}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{n}\centerdot{x}^{{n}} }{\mathrm{2}+{x}^{{n}} }\:{dx}=? \\ $$

Answered by mindispower last updated on 01/May/21

∫_0 ^1 ((nx^n )/(2+x^n ))dx=∫_0 ^1 x.((d(2+x^n ))/(2+x^n ))  =[xln(2+x^n )]_0 ^1 −∫_0 ^1 ln(2+x^n )dx  =ln(3)−∫_0 ^1 ln(2(1+(x^n /2)))dx  =ln((3/2))−∫_0 ^1 ln(1+(x^n /2))dx  0≤ln(1+x)≤x...∀x∈[0,∞[  proof    0≤(1/(1+x))≤1⇒0≤∫_0 ^x (1/(1+t))≤∫_0 ^x 1dt  ⇔0≤ln(1+x)≤x  proved  ⇒0≤ln(1+(x^n /2))≤(x^n /2)⇒0≤An=∫_0 ^1 ln(1+(x^n /2))dx≤∫_0 ^1 (x^n /2)  ⇔0≤A_n ≤(1/(2(n+1)))⇒lim_(n→∞) An=0  ⇒lim_(n→∞) ∫_0 ^1 ((nx^n )/(1+x^n ))dx=lim_(n→∞) ln((3/2))+A_n =ln((3/2))

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{nx}^{{n}} }{\mathrm{2}+{x}^{{n}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}.\frac{{d}\left(\mathrm{2}+{x}^{{n}} \right)}{\mathrm{2}+{x}^{{n}} } \\ $$$$=\left[{xln}\left(\mathrm{2}+{x}^{{n}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}+{x}^{{n}} \right){dx} \\ $$$$={ln}\left(\mathrm{3}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}\left(\mathrm{1}+\frac{{x}^{{n}} }{\mathrm{2}}\right)\right){dx} \\ $$$$={ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+\frac{{x}^{{n}} }{\mathrm{2}}\right){dx} \\ $$$$\mathrm{0}\leqslant{ln}\left(\mathrm{1}+{x}\right)\leqslant{x}...\forall{x}\in\left[\mathrm{0},\infty\left[\right.\right. \\ $$$${proof}\:\:\:\:\mathrm{0}\leqslant\frac{\mathrm{1}}{\mathrm{1}+{x}}\leqslant\mathrm{1}\Rightarrow\mathrm{0}\leqslant\int_{\mathrm{0}} ^{{x}} \frac{\mathrm{1}}{\mathrm{1}+{t}}\leqslant\int_{\mathrm{0}} ^{{x}} \mathrm{1}{dt} \\ $$$$\Leftrightarrow\mathrm{0}\leqslant{ln}\left(\mathrm{1}+{x}\right)\leqslant{x} \\ $$$${proved} \\ $$$$\Rightarrow\mathrm{0}\leqslant{ln}\left(\mathrm{1}+\frac{{x}^{{n}} }{\mathrm{2}}\right)\leqslant\frac{{x}^{{n}} }{\mathrm{2}}\Rightarrow\mathrm{0}\leqslant{An}=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+\frac{{x}^{{n}} }{\mathrm{2}}\right){dx}\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}} }{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{0}\leqslant{A}_{{n}} \leqslant\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}{An}=\mathrm{0} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{nx}^{{n}} }{\mathrm{1}+{x}^{{n}} }{dx}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}{ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)+\mathrm{A}_{{n}} ={ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$

Commented by mathsuji last updated on 02/May/21

thank you very much sir

$${thank}\:{you}\:{very}\:{much}\:{sir} \\ $$

Answered by mathmax by abdo last updated on 01/May/21

U_n =∫_0 ^1  ((nx^n )/(2+x^n ))dx ⇒U_n =n ∫_0 ^1  (x^n /(2+x^n ))dx =_(x^n =t)    n ∫_0 ^1  (t/(2+t))×(1/n)t^((1/n)−1)  dt  =∫_0 ^1  ((t^(1/n)  )/(2+t))dt  ⇒lim_(n→+∞)  U_n =lim_(n→+∞) ∫_0 ^1  (t^(1/n) /(2+t))dt =∫_0 ^1  (dt/(2+t))  =[ln(t+2)]_0 ^1  =ln(3)−ln(2)

$$\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{nx}^{\mathrm{n}} }{\mathrm{2}+\mathrm{x}^{\mathrm{n}} }\mathrm{dx}\:\Rightarrow\mathrm{U}_{\mathrm{n}} =\mathrm{n}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{2}+\mathrm{x}^{\mathrm{n}} }\mathrm{dx}\:=_{\mathrm{x}^{\mathrm{n}} =\mathrm{t}} \:\:\:\mathrm{n}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{t}}{\mathrm{2}+\mathrm{t}}×\frac{\mathrm{1}}{\mathrm{n}}\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{n}}−\mathrm{1}} \:\mathrm{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{n}}} \:}{\mathrm{2}+\mathrm{t}}\mathrm{dt}\:\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{U}_{\mathrm{n}} =\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{n}}} }{\mathrm{2}+\mathrm{t}}\mathrm{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dt}}{\mathrm{2}+\mathrm{t}} \\ $$$$=\left[\mathrm{ln}\left(\mathrm{t}+\mathrm{2}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\mathrm{ln}\left(\mathrm{3}\right)−\mathrm{ln}\left(\mathrm{2}\right) \\ $$

Commented by mathsuji last updated on 02/May/21

thank you very much sir

$${thank}\:{you}\:{very}\:{much}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com