Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 139771 by Engr_Jidda last updated on 01/May/21

Commented by mohammad17 last updated on 01/May/21

yes sir realy im sory can you solve this?

yessirrealyimsorycanyousolvethis?

Commented by mr W last updated on 01/May/21

take care!  (3)^(1/(1/2)) =3^2 ≠3^(1/2)

takecare!312=32312

Commented by mohammad17 last updated on 01/May/21

sir if (3)^(1/(1/2)) =3^2  then (3)^(1/(1/7)) =3^7 its right or no

sirif312=32then317=37itsrightorno

Commented by mr W last updated on 01/May/21

yes. it′s right.

yes.itsright.

Commented by mohammad17 last updated on 01/May/21

thank you very much sir

thankyouverymuchsir

Answered by mr W last updated on 01/May/21

(a)^(1/x) =a^(1/x)   ⇒(a)^(1/(1/x)) =a^(1/(((1/x)))) =a^x     ((((x^x )^(1/(1/x)) )^x ))^(1/(1/x)) =4  (((x^x^2  )^x ))^(1/(1/x)) =4  (x^x^2  )^x^2  =4  x^(x^2 x^2 ) =4  x^x^4  =4  ⇒x^4 =4  ⇒x=±(4)^(1/4) =±(√2)

ax=a1xa1x=a1(1x)=ax(xx1x)x1x=4(xx2)x1x=4(xx2)x2=4xx2x2=4xx4=4x4=4x=±44=±2

Commented by Ankushkumarparcha last updated on 01/May/21

if u use power tower then this equation has no solution  ∵ range R ∈ [(1/e) , e]

ifuusepowertowerthenthisequationhasnosolutionrangeR[1e,e]

Commented by mr W last updated on 01/May/21

i didn′t use power tower.  the original equation is equivalent to  x^x^4  =4.  and eqn. x^x^4  =a has always solution if  a≥≈0.9121

ididntusepowertower.theoriginalequationisequivalenttoxx4=4.andeqn.xx4=ahasalwayssolutionifa⩾≈0.9121

Answered by Ankushkumarparcha last updated on 01/May/21

Solution: ((((x^x )^(1/(1/x)) )^x ))^(1/(1/x))  = 4 => x^x^4   = 4   (∵  (b)^(1/(1/a))  = b^a )  By observing we get, x = (√2)

Solution:(xx1x)x1x=4=>xx4=4(b1a=ba)Byobservingweget,x=2

Commented by mr W last updated on 01/May/21

x=−(√2) is also solution.

x=2isalsosolution.

Answered by Ar Brandon last updated on 01/May/21

x^x^4  =4⇒x^4 lnx=ln4  ⇒4x^4 lnx=4ln4  ⇒4lnx∙e^(4lnx) =ln4∙e^(ln4)   ⇒W_0 (4lnx)=W_0 (ln4)  ⇒4lnx=ln4⇒x^4 =4⇒x=±(√2)

xx4=4x4lnx=ln44x4lnx=4ln44lnxe4lnx=ln4eln4W0(4lnx)=W0(ln4)4lnx=ln4x4=4x=±2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com