Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 139811 by mnjuly1970 last updated on 01/May/21

             𝛗:=∫_0 ^( 1) (√x) ln((1/(1βˆ’x)))dx       solution:         𝛗:= ∫_0 ^( 1) (√x) Ξ£_(n=1) ^∞ (x^n /n) dx           :=Ξ£_(n=1) ^∞ (1/n)∫_0 ^( 1) x^(n+(1/2)) dx           := Ξ£_(n=1) ^∞ (1/(n(n+(3/2)))) = (2/3)Ξ£_(n=1) ^∞ ((1/n)βˆ’(1/(n+(3/2))))         :=(2/3){Ξ³ βˆ’Ξ³+Ξ£_(n=1) ^∞ ((1/n)βˆ’(1/(n+(3/2)))) }       := (2/3) Ξ³ +(2/3) ψ(1+(3/2))=(2/3) Ξ³ +(2/3)((2/3)+ψ((3/2)))       :=(2/3) Ξ³ +(4/9) +(2/3)(2+ψ((1/2)))       :=(2/3) Ξ³ +((16)/9) βˆ’(2/3) Ξ³βˆ’(4/3) ln(2)              :=((16)/9) βˆ’(4/3) ln(2) .....βœ“

Ο•:=∫01xln(11βˆ’x)dxsolution:Ο•:=∫01xβˆ‘βˆžn=1xnndx:=βˆ‘βˆžn=11n∫01xn+12dx:=βˆ‘βˆžn=11n(n+32)=23βˆ‘βˆžn=1(1nβˆ’1n+32):=23{Ξ³βˆ’Ξ³+βˆ‘βˆžn=1(1nβˆ’1n+32)}:=23Ξ³+23ψ(1+32)=23Ξ³+23(23+ψ(32)):=23Ξ³+49+23(2+ψ(12)):=23Ξ³+169βˆ’23Ξ³βˆ’43ln(2):=169βˆ’43ln(2).....βœ“

Answered by mathmax by abdo last updated on 01/May/21

Ξ¦=∫_0 ^1  (√x)log((1/(1βˆ’x)))dx β‡’Ξ¦=βˆ’βˆ«_0 ^1  (√x)log(1βˆ’x)dx  =_((√x)=t)    βˆ’βˆ«_0 ^1 t log(1βˆ’t^2 )(2t)dt  =βˆ’2∫_0 ^1  t^2  log(1βˆ’t^2 )dt  =βˆ’2{  [((t^3 βˆ’1)/3)log(1βˆ’t^2 )]_0 ^1 βˆ’βˆ«_0 ^1  ((t^3 βˆ’1)/3)Γ—((βˆ’2t)/(1βˆ’t^2 ))dt}  =βˆ’(4/3) ∫_0 ^1   ((t^4 βˆ’t)/(1βˆ’t^2 ))dt  =(4/3)∫_0 ^1  ((t(t^3 βˆ’1))/((tβˆ’1)(t+1)))dt  =(4/3) ∫_0 ^1  ((t(t^2 +t+1))/(t+1))dt =(4/3)∫_0 ^1   ((t^3  +t^2  +t)/(t+1))dt  =_(t+1=y)     (4/3)∫_1 ^2  (((yβˆ’1)^3  +(yβˆ’1)^2  +yβˆ’1)/y)dy  =(4/3)∫_1 ^2  ((y^3 βˆ’3y^2  +3yβˆ’1+y^2 βˆ’2y+1+yβˆ’1)/y)dy  =(4/3)∫_1 ^2  ((y^3 βˆ’2y^2 +2yβˆ’1)/y)dy  =(4/3)∫_1 ^2 (y^2 βˆ’2y+2βˆ’(1/y))dy  =(4/3)[(y^3 /3)βˆ’y^2  +2yβˆ’log∣y∣]_1 ^2   =(4/3){(8/3)βˆ’4+4βˆ’log2βˆ’(1/3)+1βˆ’2}  =(4/3){(7/3)βˆ’1βˆ’log2} =(4/3)((4/3)βˆ’log2) =((16)/9)βˆ’(4/3)log2

Ξ¦=∫01xlog(11βˆ’x)dxβ‡’Ξ¦=βˆ’βˆ«01xlog(1βˆ’x)dx=x=tβˆ’βˆ«01tlog(1βˆ’t2)(2t)dt=βˆ’2∫01t2log(1βˆ’t2)dt=βˆ’2{[t3βˆ’13log(1βˆ’t2)]01βˆ’βˆ«01t3βˆ’13Γ—βˆ’2t1βˆ’t2dt}=βˆ’43∫01t4βˆ’t1βˆ’t2dt=43∫01t(t3βˆ’1)(tβˆ’1)(t+1)dt=43∫01t(t2+t+1)t+1dt=43∫01t3+t2+tt+1dt=t+1=y43∫12(yβˆ’1)3+(yβˆ’1)2+yβˆ’1ydy=43∫12y3βˆ’3y2+3yβˆ’1+y2βˆ’2y+1+yβˆ’1ydy=43∫12y3βˆ’2y2+2yβˆ’1ydy=43∫12(y2βˆ’2y+2βˆ’1y)dy=43[y33βˆ’y2+2yβˆ’log∣y∣]12=43{83βˆ’4+4βˆ’log2βˆ’13+1βˆ’2}=43{73βˆ’1βˆ’log2}=43(43βˆ’log2)=169βˆ’43log2

Commented by mnjuly1970 last updated on 01/May/21

thx sir max ...

thxsirmax...

Commented by mathmax by abdo last updated on 02/May/21

you are welcome sir

youarewelcomesir

Answered by Ar Brandon last updated on 16/May/21

Ο†=∫_0 ^1 (√x)ln((1/(1βˆ’x)))dx=βˆ’βˆ«_0 ^1 (√x)ln(1βˆ’x)dx  ∫_0 ^1 x^(mβˆ’1) (1βˆ’x)^(nβˆ’1) dx=Ξ²(m,n)=((Ξ“(m)Ξ“(n))/(Ξ“(m+n)))  lnΞ²(m,n)=lnΞ“(m)+lnΞ“(n)βˆ’lnΞ“(m+n)  (1/(Ξ²(m,n)))βˆ™((βˆ‚Ξ²(m,n))/βˆ‚n)=ψ(n)βˆ’Οˆ(m+n)  β‡’((βˆ‚Ξ²((3/2),1))/βˆ‚n)=Ξ²((3/2),1){ψ(1)βˆ’Οˆ((5/2))}                         =((Ξ“((3/2)))/(Ξ“((5/2)))){βˆ’Ξ³βˆ’((2/3)+2βˆ’Ξ³βˆ’2ln2)}  Ο†=βˆ’(2/3)(2ln2βˆ’(8/3))=((16)/9)βˆ’((4ln2)/3)

Ο•=∫01xln(11βˆ’x)dx=βˆ’βˆ«01xln(1βˆ’x)dx∫01xmβˆ’1(1βˆ’x)nβˆ’1dx=Ξ²(m,n)=Ξ“(m)Ξ“(n)Ξ“(m+n)lnΞ²(m,n)=lnΞ“(m)+lnΞ“(n)βˆ’lnΞ“(m+n)1Ξ²(m,n)β‹…βˆ‚Ξ²(m,n)βˆ‚n=ψ(n)βˆ’Οˆ(m+n)β‡’βˆ‚Ξ²(32,1)βˆ‚n=Ξ²(32,1){ψ(1)βˆ’Οˆ(52)}=Ξ“(32)Ξ“(52){βˆ’Ξ³βˆ’(23+2βˆ’Ξ³βˆ’2ln2)}Ο•=βˆ’23(2ln2βˆ’83)=169βˆ’4ln23

Commented by mnjuly1970 last updated on 01/May/21

  grateful mr brandon...

gratefulmrbrandon...

Commented by SLVR last updated on 01/May/21

could you explain whatψ(1)?ψ(5/2)  Thanks mr.Brandon sir

couldyouexplainwhatψ(1)?ψ(5/2)Thanksmr.Brandonsir

Commented by Ar Brandon last updated on 01/May/21

Youβ€²re welcome Sir

Youβ€²rewelcomeSir

Commented by Ar Brandon last updated on 01/May/21

Ξ“β€²(x)=Ξ“(x)ψ(x)β‡’((Ξ“β€²(x))/(Ξ“(x)))=ψ(x)  ψ(s+1)=(1/s)+ψ(s) , ψ((1/2))=βˆ’Ξ³βˆ’2ln2  ψ(x)=βˆ’Ξ³+Ξ£_(n=0) ^∞ ((1/(n+1))βˆ’(1/(n+x))) β‡’Οˆ(1)=βˆ’Ξ³  ψ(x) represents digamma function.

Ξ“β€²(x)=Ξ“(x)ψ(x)β‡’Ξ“β€²(x)Ξ“(x)=ψ(x)ψ(s+1)=1s+ψ(s),ψ(12)=βˆ’Ξ³βˆ’2ln2ψ(x)=βˆ’Ξ³+βˆ‘βˆžn=0(1n+1βˆ’1n+x)β‡’Οˆ(1)=βˆ’Ξ³Οˆ(x)representsdigammafunction.

Commented by SLVR last updated on 01/May/21

So....kind you..sir  Great...explanation  God...bless you for ever

So....kindyou..sirGreat...explanationGod...blessyouforever

Commented by Ar Brandon last updated on 01/May/21

Thanks!

Thanks!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com