All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 139826 by qaz last updated on 01/May/21
∑∞n=0sin[(n−1)x]4n+1=?
Answered by mnjuly1970 last updated on 01/May/21
Ω:=∑∞n=0sin((n−1)x)4n+1=14Im∑∞n=0ei(n−1)x4n:=14Im{(eix)∑∞n=0einx4n}:=14Im{(eix)∑∞n=0(eix4)n}:=14Im{(eix)(11−eix4)}:=Im((cos(x)+isin(x)).(14−cos(x)−isin(x))):=Im{(cos(x)+isin(x)}.Im{4−cos(x)+isin(x)16−8cos(x)+1}:=(sin(x)).(sin(x)17−8cos(x))=sin2(x)17−8cos(x)...
Answered by Dwaipayan Shikari last updated on 01/May/21
∑∞n=1sin(nx)cos2x−cos(nx)sin(2x)4n=12icos2x∑∞n=1(eix4)n−(e−ix4)n−12sin(2x)∑∞n=1(eix4)n+(e−ix4)n=cos(2x)2i(11−eix4−11−e−ix4)−sin(2x)2(11−eix4+11−e−ix4)=cos(2x)2i(44−eix−44−e−ix)−sin(2x)2(44−eix+44−e−ix)=4cos(2x)2i(2isin(x)16−2cosx+1)−sin(2x)2(8−2cosx16−2cosx+1)=4cos(2x)sin(x)−4sin(2x)+sin(2x)cos(x)17−2cosx...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com