All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 139851 by mnjuly1970 last updated on 01/May/21
prove......Φ=∫01ln(11−x)xdx=4ln(e2)...✓
Answered by mindispower last updated on 01/May/21
Φ=−∫01ln(1−x)x⇒Φ=−2∫01ln(1−x).dx=−2∫01ln(1−t2)dt=limx→1[−2tln(1−t2)]0x−4∫0xt21−t2=limx→1−2xln(1−x)+4x−2∫0x11−t+11+tdt=limx→1−2xln(1−x)+2ln(1−x)+4x−2ln(1+x)=lim2x→1(1−x)ln(1−x)+4−2ln(2)4ln(e)−4ln2=4ln(e2)
Answered by mnjuly1970 last updated on 01/May/21
solution(2)Φ=∫01∑∞n=1xn−12ndx=∑∞n=11n(n+12)=2∑∞n=1(1n−1n+12)=2(γ−γ+∑∞n=11n−1n+12)=2γ+2ψ(32)=2γ+2(2−γ−2ln(2))=4−4ln(2)=4ln(e2).....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com