All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 139878 by bramlexs22 last updated on 02/May/21
I(α)=∫α2αsinαxxdxdI(α)dα=?
Answered by EDWIN88 last updated on 02/May/21
dIdα=∫α2α∂∂α(sinαxx)dx+sinα3α2(2α)−sinα2α(1)=∫α2αcosαxdx+2sinα3−sinα2α=[1αsinαx]αα2+2sinα3−sinα2α=sinα3−sinα2α+2sinα3−sinα2α=3sinα3−2sinα2α
Answered by mathmax by abdo last updated on 02/May/21
Φ(α)=∫αα2sin(αx)xdx⇒Φ(α)=αx=t∫α2α3sinttαdtα=∫α2α3sinttdt⇒Φ′(α)=(3α2)sin(α3)α3−(2α)sin(α2)α2=3sin(α3)α−2sin(α2)α=3sin(α3)−2sin(α2)α
Terms of Service
Privacy Policy
Contact: info@tinkutara.com