Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 139948 by qaz last updated on 02/May/21

If    x^2 +xy+y^2 =0  find ::   ((x/(x+y)))^(2023) +((y/(x+y)))^(2023)

Ifx2+xy+y2=0find::(xx+y)2023+(yx+y)2023

Answered by Rasheed.Sindhi last updated on 04/May/21

(x/y)+(y/x)=−1⇒(y/x)=−(1+(x/y))                                 (x/y)=−(1+(y/x))  ((x/(x+y)))^(2023) +((y/(x+y)))^(2023)   =(1+(y/x))^(−2023) +(1+(x/y))^(−2023)   =(1−(1+(x/y)))^(−2023) +(1−(1+(y/x))^(−2023)   =(−(x/y))^(−2023) +(−(y/x))^(−2023)   =(−(y/x))^(2023) +(−(x/y))^(2023)   =−((y/x))^(2023) −((x/y))^(2023)   Continue

xy+yx=1yx=(1+xy)xy=(1+yx)(xx+y)2023+(yx+y)2023=(1+yx)2023+(1+xy)2023=(1(1+xy))2023+(1(1+yx)2023=(xy)2023+(yx)2023=(yx)2023+(xy)2023=(yx)2023(xy)2023Continue

Answered by mathmax by abdo last updated on 02/May/21

x^2  +xy +y^2  =0  for unknown x  Δ=y^2 −4y^2  =−3y^2  ⇒x_1 =((−y+i(√3)y)/2)=y e^((i2π)/3)  and x_2 =ye^(−((i2π)/3))   for x=x_1 we getΦ(x,y)=  ((x/(x+y)))^(2023)  +((y/(x+y)))^(2023)   =(((ye^((2iπ)/3) )/(y e^((i2π)/3)  +y)))^(2023) +((y/(ye^((i2π)/3)  +y)))^(2023) =((e^((2iπ)/3) /(1+e^((2iπ)/3) )))^(2023) +((1/(1+e^((2iπ)/3) )))^(2023)   =(((e^((2iπ)/3) )^(2023) +1)/((1+e^((2iπ)/3) )^(2023) ))   we have  1+j+j^2  =0 ⇒1+j =−j^2  ⇒(1+j)^(2023) =−j^(4046)   ⇒Φ(x,y)=−((1+e^((4046iπ)/3) )/((e^((2iπ)/3) )^(4046) ))=−((1+e^((4046iπ)/3) )/e^((8092iπ)/3) )  =−e^((8092iπ)/3) (1+e^((4046iπ)/3) )  rest simplification of Φ(x,y)....

x2+xy+y2=0forunknownxΔ=y24y2=3y2x1=y+i3y2=yei2π3andx2=yei2π3forx=x1wegetΦ(x,y)=(xx+y)2023+(yx+y)2023=(ye2iπ3yei2π3+y)2023+(yyei2π3+y)2023=(e2iπ31+e2iπ3)2023+(11+e2iπ3)2023=(e2iπ3)2023+1(1+e2iπ3)2023wehave1+j+j2=01+j=j2(1+j)2023=j4046Φ(x,y)=1+e4046iπ3(e2iπ3)4046=1+e4046iπ3e8092iπ3=e8092iπ3(1+e4046iπ3)restsimplificationofΦ(x,y)....

Answered by mr W last updated on 02/May/21

let t=(y/x)  x^2 +tx^2 +t^2 x^2 =0  t^2 +t+1=0 ⇒t+1=−t^2   (1/t^2 )+(1/t)+1=0  (1/t)≠1  ((1/t^2 )+(1/t)+1)((1/t)−1)=0  ((1/t))^3 −1=0  ⇒((1/t))^3 =1    ((x/(x+y)))^(2023) +((y/(x+y)))^(2023)   =((1/(1+t)))^(2023) +((t/(1+t)))^(2023)   =(−(1/t^2 ))^(2023) +(−(1/t))^(2023)   =−((1/t^2 ))^(2023) −((1/t))^(2023)   =−((1/t))^(3×1348) ((1/t))^2 −((1/t))^(3×674) ((1/t))  =−((1/t))^2 −((1/t))  =−[((1/t))^2 +((1/t))+1]+1  =−0+1  =1

lett=yxx2+tx2+t2x2=0t2+t+1=0t+1=t21t2+1t+1=01t1(1t2+1t+1)(1t1)=0(1t)31=0(1t)3=1(xx+y)2023+(yx+y)2023=(11+t)2023+(t1+t)2023=(1t2)2023+(1t)2023=(1t2)2023(1t)2023=(1t)3×1348(1t)2(1t)3×674(1t)=(1t)2(1t)=[(1t)2+(1t)+1]+1=0+1=1

Commented by qaz last updated on 04/May/21

thank you Sirs.mr W′s way is correct.

thankyouSirs.mrWswayiscorrect.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com