All Questions Topic List
Vector Questions
Previous in All Question Next in All Question
Previous in Vector Next in Vector
Question Number 139992 by ajfour last updated on 02/May/21
Commented by ajfour last updated on 03/May/21
Letroleofnewcrossmultiplicationbyk^betorotatethecomponentofavector⊥tozaxisby90°counterclockwisewise.⇒k×k=k,j×j=j,i×i=i,i×k=j,j×k=−ii×j=−k,k×j=ij×i=k,k×i=−jNowv¯=xi+yj+zkp¯=ai+bj+ckv¯×p¯=axi−bxk+cxj+ayk+byj−cyi−azj+bzi+czk⇒v¯×p¯=(ax−cy+bz)i++(cx+by−az)j+(−bx+ay+cz)kAndifv¯=p¯⇒v¯×v¯=x2i+y2j+z2k∣v¯×v¯∣=x4+y4+z4∣v¯∣=x2+y2+z2∣v¯×p¯∣2=(ax−cy+bz)2+(cx+by−az)2+(−bx+ay+cz)2=(a2+b2+c2)(x2+y2+z2)+2(−ac+bc−ab)xy+2(−bc−ab+ac)yz+2(ab−ac−bc)zxAndifz=0,c=0;thenv¯=xi+yjp¯=ai+bjv¯×p¯=axi+byj+(−bx+ay)k∣v¯×p¯∣2=a2x2+b2y2+b2x2+a2y2−2abxy=(a2+b2)(x2+y2)−2abxy⇒∣v¯×p¯∣2=∣p¯∣2∣v¯∣2−2pxpyvxvyButifv¯=i+j+kv¯×v¯=i+j+kAgainifv¯=xi+yj+zk(v¯×v¯)×v¯=(x2i+y2j+z2k)×(xi+yj+zk)=x3i−x2yk+x2zj+y2xk+y3j−y2zi−z2xj+z2yi+z3k(v¯×v¯)×v¯=(x3−y2z+z2y)i+(y3−z2x+x2z)j+(z3−x2y+y2x)k(v¯×v¯)×v¯=0⇒x3=yz(y−z)y3=zx(z−x)z3=xy(x−y)⇒x4=m(y−z)wherem=xyz⇒x4+y4+z4=0d(v¯×v¯)dt=2(xdxdti+ydydtj+zdzdtk)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com