Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 139992 by ajfour last updated on 02/May/21

Commented by ajfour last updated on 03/May/21

Let  role of new cross   multiplication by k^�    be to rotate the component  of a vector ⊥ to z axis by 90°  counter clockwise wise.  ⇒  k×k=k, j×j=j, i×i=i,  i×k=j , j×k=−i  i×j=−k , k×j=i  j×i=k , k×i=−j  Now  v^� =xi+yj+zk  p^� =ai+bj+ck  v^� ×p^� =axi−bxk+cxj                +ayk+byj−cyi                −azj+bzi+czk  ⇒ v^� ×p^� =(ax−cy+bz)i+  +(cx+by−az)j+(−bx+ay+cz)k  And if v^� =p^�   ⇒  v^� ×v^�  = x^2 i+y^2 j+z^2 k  ∣v^� ×v^� ∣=(√(x^4 +y^4 +z^4 ))     ∣v^� ∣=(√(x^2 +y^2 +z^2 ))  ∣v^� ×p^� ∣^2 =   (ax−cy+bz)^2                   +(cx+by−az)^2                +(−bx+ay+cz)^2     =(a^2 +b^2 +c^2 )(x^2 +y^2 +z^2 )      +2(−ac+bc−ab)xy      +2(−bc−ab+ac)yz       +2(   ab−ac−bc)zx  And if z=0, c=0 ; then  v^� =xi+yj  p^� =ai+bj  v^� ×p^� =axi+byj+(−bx+ay)k  ∣v^� ×p^� ∣^2 =a^2 x^2 +b^2 y^2 +b^2 x^2 +a^2 y^2                      −2abxy              =(a^2 +b^2 )(x^2 +y^2 )−2abxy  ⇒ ∣v^� ×p^� ∣^2 =∣p^� ∣^2 ∣v^� ∣^2 −2p_x p_y v_x v_y   But  if v^� =i+j+k  v^� ×v^� =i+j+k  Again   if   v^� =xi+yj+zk  (v^� ×v^� )×v^� =(x^2 i+y^2 j+z^2 k)×(xi+yj+zk)  =x^3 i−x^2 yk+x^2 zj     +y^2 xk+y^3 j−y^2 zi     −z^2 xj+z^2 yi+z^3 k  (v^� ×v^� )×v^� =  (x^3 −y^2 z+z^2 y)i    +(y^3 −z^2 x+x^2 z)j    +(z^3 −x^2 y+y^2 x)k  (v^� ×v^� )×v^� =0  ⇒  x^3 =yz(y−z)  y^3 =zx(z−x)  z^3 =xy(x−y)  ⇒ x^4 =m(y−z)   where m=xyz  ⇒  x^4 +y^4 +z^4 =0  ((d(v^� ×v^� ))/dt)=2(x(dx/dt)i+y(dy/dt)j+z(dz/dt)k)

Letroleofnewcrossmultiplicationbyk^betorotatethecomponentofavectortozaxisby90°counterclockwisewise.k×k=k,j×j=j,i×i=i,i×k=j,j×k=ii×j=k,k×j=ij×i=k,k×i=jNowv¯=xi+yj+zkp¯=ai+bj+ckv¯×p¯=axibxk+cxj+ayk+byjcyiazj+bzi+czkv¯×p¯=(axcy+bz)i++(cx+byaz)j+(bx+ay+cz)kAndifv¯=p¯v¯×v¯=x2i+y2j+z2kv¯×v¯∣=x4+y4+z4v¯∣=x2+y2+z2v¯×p¯2=(axcy+bz)2+(cx+byaz)2+(bx+ay+cz)2=(a2+b2+c2)(x2+y2+z2)+2(ac+bcab)xy+2(bcab+ac)yz+2(abacbc)zxAndifz=0,c=0;thenv¯=xi+yjp¯=ai+bjv¯×p¯=axi+byj+(bx+ay)kv¯×p¯2=a2x2+b2y2+b2x2+a2y22abxy=(a2+b2)(x2+y2)2abxyv¯×p¯2=∣p¯2v¯22pxpyvxvyButifv¯=i+j+kv¯×v¯=i+j+kAgainifv¯=xi+yj+zk(v¯×v¯)×v¯=(x2i+y2j+z2k)×(xi+yj+zk)=x3ix2yk+x2zj+y2xk+y3jy2ziz2xj+z2yi+z3k(v¯×v¯)×v¯=(x3y2z+z2y)i+(y3z2x+x2z)j+(z3x2y+y2x)k(v¯×v¯)×v¯=0x3=yz(yz)y3=zx(zx)z3=xy(xy)x4=m(yz)wherem=xyzx4+y4+z4=0d(v¯×v¯)dt=2(xdxdti+ydydtj+zdzdtk)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com