Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140056 by Ndala last updated on 03/May/21

Prove the folowing result:  ∫_0 ^(π/2) cot θ∙(log sec θ)^3 dθ=(π^4 /(240))  .  I need your help, if possible please.

Provethefolowingresult:0π2cotθ(logsecθ)3dθ=π4240.Ineedyourhelp,ifpossibleplease.

Answered by Ar Brandon last updated on 04/May/21

∫_0 ^(π/2) cotθ(ln secθ)^3 dθ=−∫_0 ^(π/2) sin^(−1) θcosθ∙ln^3 cosθdθ  β(m,n)=2∫_0 ^(π/2) sin^(2m−1) θcos^(2n−1) θdθ=((Γ(m)Γ(n))/(Γ(m+n)))  lnβ(m,n)=lnΓ(m)+lnΓ(n)−lnΓ(m+n)  ((β ′(m,n))/(β(m,n)))=ψ(n)−ψ(m+n)  β′′(m,n)=β(m,n)[ψ′(n)−ψ′(m+n)]+β′(m,n)[ψ(n)−ψ(m+n)]  β′′′(m,n)=β(m,n)[ψ′′(n)−ψ′′(m+n)]+β′(m,n)[ψ′(n)−ψ′(m+n)]                         +β′′(m,n)[ψ(n)−ψ(m+n)]+β′(m,n)[ψ′(n)−ψ′(m+n)]

0π2cotθ(lnsecθ)3dθ=0π2sin1θcosθln3cosθdθβ(m,n)=20π2sin2m1θcos2n1θdθ=Γ(m)Γ(n)Γ(m+n)lnβ(m,n)=lnΓ(m)+lnΓ(n)lnΓ(m+n)β(m,n)β(m,n)=ψ(n)ψ(m+n)β(m,n)=β(m,n)[ψ(n)ψ(m+n)]+β(m,n)[ψ(n)ψ(m+n)]β(m,n)=β(m,n)[ψ(n)ψ(m+n)]+β(m,n)[ψ(n)ψ(m+n)]+β(m,n)[ψ(n)ψ(m+n)]+β(m,n)[ψ(n)ψ(m+n)]

Commented by Ndala last updated on 07/May/21

Can  you complete?

Canyoucomplete?

Answered by qaz last updated on 07/May/21

∫_0 ^(π/2) (cot θ)∙ln^3 sec θdθ........cos θ→x  =∫_0 ^1 (x/( 1−x^2 ))ln^3 ((1/x))dx  =∫_0 ^∞ (e^(−2y) /(1−e^(−2y) ))y^3 dy................x→e^(−y)   =∫_0 ^∞ ((1/(1−e^(−2y) ))−1)y^3 dy  =Σ_(n=1) ^∞ ∫_0 ^∞ y^3 e^(−2ny) dy  =Σ_(n=1) ^∞ ((3!)/((2n)^4 ))  =(π^4 /(240))

0π/2(cotθ)ln3secθdθ........cosθx=01x1x2ln3(1x)dx=0e2y1e2yy3dy................xey=0(11e2y1)y3dy=n=10y3e2nydy=n=13!(2n)4=π4240

Terms of Service

Privacy Policy

Contact: info@tinkutara.com