All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 140056 by Ndala last updated on 03/May/21
Provethefolowingresult:∫0π2cotθ⋅(logsecθ)3dθ=π4240.Ineedyourhelp,ifpossibleplease.
Answered by Ar Brandon last updated on 04/May/21
∫0π2cotθ(lnsecθ)3dθ=−∫0π2sin−1θcosθ⋅ln3cosθdθβ(m,n)=2∫0π2sin2m−1θcos2n−1θdθ=Γ(m)Γ(n)Γ(m+n)lnβ(m,n)=lnΓ(m)+lnΓ(n)−lnΓ(m+n)β′(m,n)β(m,n)=ψ(n)−ψ(m+n)β″(m,n)=β(m,n)[ψ′(n)−ψ′(m+n)]+β′(m,n)[ψ(n)−ψ(m+n)]β‴(m,n)=β(m,n)[ψ″(n)−ψ″(m+n)]+β′(m,n)[ψ′(n)−ψ′(m+n)]+β″(m,n)[ψ(n)−ψ(m+n)]+β′(m,n)[ψ′(n)−ψ′(m+n)]
Commented by Ndala last updated on 07/May/21
Canyoucomplete?
Answered by qaz last updated on 07/May/21
∫0π/2(cotθ)⋅ln3secθdθ........cosθ→x=∫01x1−x2ln3(1x)dx=∫0∞e−2y1−e−2yy3dy................x→e−y=∫0∞(11−e−2y−1)y3dy=∑∞n=1∫0∞y3e−2nydy=∑∞n=13!(2n)4=π4240
Terms of Service
Privacy Policy
Contact: info@tinkutara.com