Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 140073 by EDWIN88 last updated on 04/May/21

Let f(x)= { ((3x^2 −1 ; x<0)),((cx+d ; 0≤x≤1)),(((√(x+8)) ; x>1)) :}  find the value of c & d such that f(x) continous  everywhere

Letf(x)={3x21;x<0cx+d;0x1x+8;x>1 findthevalueofc&dsuchthatf(x)continous everywhere

Answered by bobhans last updated on 04/May/21

since lim_(x→0^( −) )  3x^2 −1 =−1 the value of  cx+d at x=0 must be −1 that is d=−1  since lim_(x→1^( +) )  (√(x+8)) = 3 the value of cx+d at x=1  must be 3 that is 3=c(1)−1, c=4  ∴  { ((c=4)),((d=−1)) :}

sincelimx03x21=1thevalueof cx+datx=0mustbe1thatisd=1 sincelimx1+x+8=3thevalueofcx+datx=1 mustbe3thatis3=c(1)1,c=4 {c=4d=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com