Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 140076 by bobhans last updated on 04/May/21

Commented by mr W last updated on 05/May/21

eqn. 2x−3y+a=0 fixes only the  inclination of the line. the vertical  position will be determined by the  value of a. the distance from point  (3,−6) must to this line must be the  same as to 2x+3y+25=0, so we get  two parallel lines with different a.

eqn.2x3y+a=0fixesonlytheinclinationoftheline.theverticalpositionwillbedeterminedbythevalueofa.thedistancefrompoint(3,6)musttothislinemustbethesameasto2x+3y+25=0,sowegettwoparallellineswithdifferenta.

Commented by EDWIN88 last updated on 04/May/21

clockwise for θ    (((x′−3)),((y^′ +6)) ) =  (((   cos θ    sin θ)),((−sin θ   cos θ)) )  (((x−3)),((y+6)) )   (((x′−3)),((y′+6)) ) =  ((((x−3)cos θ+(y+6)sin θ)),(((3−x)sin θ+(y+6)cos θ)) )  ⇒2((x−3)cos θ+(y+6)sin θ+3)−3((3−x)sin θ+(y+6)cos θ−6)+a=0  (2x−6)cos θ+(2y+12)sin θ+6−(9−3x)sin θ−(3y+18)cos θ+18+a=0  ⇒2cos θ.x+2sin θ.y+6−6cos θ+12sin θ+3sin θ.x−3cos θ.y−9sin θ−18cos θ+18+a=0  ⇒(2cos θ+3sin θ).x+(2sin θ−3cos θ)y+24+a−24cos θ+3sin θ=0   { ((2cos θ+3sin θ=2...(×3))),((2sin θ−3cos θ=3...(×2))),((24+a−24cos θ+3sin θ=25)) :}   { ((6cos θ+9sin θ=6)),((−6cos θ+4sin θ=6)) :} ⇒sin θ=((12)/(13)) & 2cos θ=2−((36)/(13))  cos θ=−(5/(13)) then tan θ = −((12)/5)  ⇒a=1+24cos θ−3sin θ  ⇒a=1+24(−(5/(13)))−3(((12)/(13)))  ⇒a=1−((120)/(13))−((36)/(13)) = ((13−156)/(13))=−((143)/(13))=−11

clockwiseforθ(x3y+6)=(cosθsinθsinθcosθ)(x3y+6)(x3y+6)=((x3)cosθ+(y+6)sinθ(3x)sinθ+(y+6)cosθ)2((x3)cosθ+(y+6)sinθ+3)3((3x)sinθ+(y+6)cosθ6)+a=0(2x6)cosθ+(2y+12)sinθ+6(93x)sinθ(3y+18)cosθ+18+a=02cosθ.x+2sinθ.y+66cosθ+12sinθ+3sinθ.x3cosθ.y9sinθ18cosθ+18+a=0(2cosθ+3sinθ).x+(2sinθ3cosθ)y+24+a24cosθ+3sinθ=0{2cosθ+3sinθ=2...(×3)2sinθ3cosθ=3...(×2)24+a24cosθ+3sinθ=25{6cosθ+9sinθ=66cosθ+4sinθ=6sinθ=1213&2cosθ=23613cosθ=513thentanθ=125a=1+24cosθ3sinθa=1+24(513)3(1213)a=1120133613=1315613=14313=11

Commented by mr W last updated on 04/May/21

ax+by+c=0≡px+qy+r ⇒a=p,b=q,c=r  means also  ax+by+c=0≡−px−qy−r=0  i.e. a=−p,b=−q,c=−r  therefore we have two solutions.

ax+by+c=0px+qy+ra=p,b=q,c=rmeansalsoax+by+c=0pxqyr=0i.e.a=p,b=q,c=rthereforewehavetwosolutions.

Commented by EDWIN88 last updated on 04/May/21

yes second solution from    distance point(3,−6) to line first and second line

yessecondsolutionfromdistancepoint(3,6)tolinefirstandsecondline

Commented by mr W last updated on 05/May/21

Commented by liberty last updated on 05/May/21

 d [(3,−6),2x+3y+25=0 ]= d[(3,−6),2x−3y+a=0 ]   ((∣6−18+25∣)/( (√(13)))) = ((∣6+18+a∣)/( (√(13))))  ⇒13 = ∣24+a∣ → { ((24+a=13→a=−11)),((24+a=−13→a=−37)) :}

d[(3,6),2x+3y+25=0]=d[(3,6),2x3y+a=0]618+2513=6+18+a1313=24+a{24+a=13a=1124+a=13a=37

Answered by mr W last updated on 04/May/21

first possibility:  tan θ=tan (π−φ)=−tan φ=  =−((2×(2/3))/(1−((2/3))^2 ))=−((12)/5)  2x+2(−6)+25=2x−3(−6)+a  ⇒a=−11

firstpossibility:tanθ=tan(πϕ)=tanϕ==2×231(23)2=1252x+2(6)+25=2x3(6)+aa=11

Commented by mr W last updated on 04/May/21

Commented by mr W last updated on 04/May/21

second possibility:  tan θ=tan (2π−φ)=−tan φ=−((12)/5)  2×3+2y+25=2×3−3y+a  y=−((25+2x)/3)=−((25+2×3)/3)  y=((a+2x)/3)=((a+2×3)/3)  ⇒a=−37

secondpossibility:tanθ=tan(2πϕ)=tanϕ=1252×3+2y+25=2×33y+ay=25+2x3=25+2×33y=a+2x3=a+2×33a=37

Commented by mr W last updated on 04/May/21

Answered by mr W last updated on 04/May/21

general method without using any  geometry or graph:    x′=(x−3)cos θ−(y+6)sin θ+3  y′=(x−3)sin θ+(y+6)cos θ−6    2[(x−3)cos θ−(y+6)sin θ+3]+3[(x−3)sin θ+(y+6)cos θ−6]+25=0  2xcos θ−2ysin θ+3xsin θ−21sin θ+3ycos θ+12cos θ+13=0    (2cos θ+3sin θ)x−(2sin θ−3cos θ)y−21sin θ+12cos θ+13=0  ≡2x−3y+a=0  case 1:  ⇒2cos θ+3sin θ=2   ...(i)  ⇒2sin θ−3cos θ=3   ...(iii)  ⇒−21sin θ+12cos θ+13=a   ...(iii)  from (i) and (ii):  sin θ=((12)/(13))  cos θ=−(5/(13))  since (((12)/(13)))^2 +(−(5/(13)))^2 =1 ⇒solution is  consistent.  ⇒tan θ=−((12)/5) ⇒θ=π−tan^(−1) ((12)/5)  from (iii):  a=−21×((12)/(13))−12×(5/(13))+13=−11    case 2:  ⇒2cos θ+3sin θ=−2   ...(i)  ⇒2sin θ−3cos θ=−3   ...(iii)  ⇒−21sin θ+12cos θ+13=−a   ...(iii)  from (i) and (ii):  sin θ=−((12)/(13))  cos θ=(5/(13))  ⇒tan θ=−((12)/5) ⇒θ=2π−tan^(−1) ((12)/5)  from (iii):  a=−21×((12)/(13))−12×(5/(13))−13=−37

generalmethodwithoutusinganygeometryorgraph:x=(x3)cosθ(y+6)sinθ+3y=(x3)sinθ+(y+6)cosθ62[(x3)cosθ(y+6)sinθ+3]+3[(x3)sinθ+(y+6)cosθ6]+25=02xcosθ2ysinθ+3xsinθ21sinθ+3ycosθ+12cosθ+13=0(2cosθ+3sinθ)x(2sinθ3cosθ)y21sinθ+12cosθ+13=02x3y+a=0case1:2cosθ+3sinθ=2...(i)2sinθ3cosθ=3...(iii)21sinθ+12cosθ+13=a...(iii)from(i)and(ii):sinθ=1213cosθ=513since(1213)2+(513)2=1solutionisconsistent.tanθ=125θ=πtan1125from(iii):a=21×121312×513+13=11case2:2cosθ+3sinθ=2...(i)2sinθ3cosθ=3...(iii)21sinθ+12cosθ+13=a...(iii)from(i)and(ii):sinθ=1213cosθ=513tanθ=125θ=2πtan1125from(iii):a=21×121312×51313=37

Terms of Service

Privacy Policy

Contact: info@tinkutara.com