Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 140089 by otchereabdullai@gmail.com last updated on 04/May/21

Given that log_4 (y−1)+log_4 ((x/y))=k  and log_2 (y+1)−log_2 x=k−1  Show that y^2 =1+8^k   Hence deduce the value of y and x   when k=1

Giventhatlog4(y1)+log4(xy)=kandlog2(y+1)log2x=k1Showthaty2=1+8kHencededucethevalueofyandxwhenk=1

Answered by mr W last updated on 04/May/21

log_4  (y−1)((x/y))=k  ⇒ (y−1)((x/y))=4^k =2^(2k)    ...(i)  log_2  ((y+1)/x)=k−1  ⇒ ((y+1)/x)=2^(k−1)    ...(ii)  (i)×(ii):  (y−1)(y+1)(1/y)=2^(3k−1) =(8^k /2)  y^2 −1=(8^k /2)y  ⇒y^2 =1+(8^k /2)y≠1+8^k   something is wrong in question!

log4(y1)(xy)=k(y1)(xy)=4k=22k...(i)log2y+1x=k1y+1x=2k1...(ii)(i)×(ii):(y1)(y+1)1y=23k1=8k2y21=8k2yy2=1+8k2y1+8ksomethingiswronginquestion!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com