Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 140104 by EnterUsername last updated on 04/May/21

Let z=1+cos(10π/9)+isin(10π/9). Then  (A) ∣z∣=2cos(((2π)/9))                     (B) arg z=((8π)/9)  (C) ∣z∣=2cos(((4π)/9))                     (D) arg z=((5π)/9)

Letz=1+cos(10π/9)+isin(10π/9).Then(A)z∣=2cos(2π9)(B)argz=8π9(C)z∣=2cos(4π9)(D)argz=5π9

Commented by EnterUsername last updated on 04/May/21

One or more answers may be correct.

Oneormoreanswersmaybecorrect.

Answered by MJS_new last updated on 04/May/21

cos ((10π)/9) +i sin ((10π)/9) =−cos (π/9) −i sin (π/9)  ∣z∣=(√((1−cos θ)^2 +(−sin θ)^2 ))=(√(2−2cos θ))=  =2∣sin (θ/2)∣=2sin (π/(18)) =2cos ((4π)/9)  tan (arg z)=((−sin θ)/(1−cos θ))=−cot (θ/2) =−cot (π/(18)) ⇒  ⇒ arg z =((5π)/9)

cos10π9+isin10π9=cosπ9isinπ9z∣=(1cosθ)2+(sinθ)2=22cosθ==2sinθ2∣=2sinπ18=2cos4π9tan(argz)=sinθ1cosθ=cotθ2=cotπ18argz=5π9

Commented by EnterUsername last updated on 04/May/21

Thank you Sir  arg z=−tan^(−1) (cot(π/(18)))=(π/2)+cot^(−1) (cot(π/(18)))=(π/2)+(π/(18))=((5π)/9)  Understood !

ThankyouSirargz=tan1(cotπ18)=π2+cot1(cotπ18)=π2+π18=5π9Understood!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com