Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 140129 by mathdanisur last updated on 04/May/21

x;y∈R^+  ; x^2 +y^2 =2  proof: 3−xy≥(x+y)(√(xy))+(x−y)^2 ≥2xy

x;yR+;x2+y2=2proof:3xy(x+y)xy+(xy)22xy

Answered by mr W last updated on 05/May/21

we′ll use a+b≥2(√(ab))    x^2 +y^2 =2  ⇒x=(√2)cos θ>0  ⇒y=(√2)sin θ>0    (x+y)(√(xy))+(x−y)^2   =(√2)(cos θ+sin θ)(√(2cos θsin θ))+2(cos θ−sin θ)^2   =(cos θ+sin θ)2(√(cos θsin θ))+2−4cos θsin θ  ≤(cos θ+sin θ)(cos θ+sin θ)+2−4cos θsin θ  =1+2cos θsin θ+2−4cos θsin θ  =3−2cos θsin θ  =3−xy    (x+y)(√(xy))+(x−y)^2   =(cos θ+sin θ)2(√(cos θsin θ))+2−4cos θsin θ  ≥2(√(cos θsin θ))2(√(cos θsin θ))+2−4cos θsin θ  =4cos θsin θ+2−4cos θsin θ  =2  ≥2 sin 2θ=2×2cos θsin θ  =2xy

wellusea+b2abx2+y2=2x=2cosθ>0y=2sinθ>0(x+y)xy+(xy)2=2(cosθ+sinθ)2cosθsinθ+2(cosθsinθ)2=(cosθ+sinθ)2cosθsinθ+24cosθsinθ(cosθ+sinθ)(cosθ+sinθ)+24cosθsinθ=1+2cosθsinθ+24cosθsinθ=32cosθsinθ=3xy(x+y)xy+(xy)2=(cosθ+sinθ)2cosθsinθ+24cosθsinθ2cosθsinθ2cosθsinθ+24cosθsinθ=4cosθsinθ+24cosθsinθ=22sin2θ=2×2cosθsinθ=2xy

Commented by mathdanisur last updated on 05/May/21

cool thankyou sir

coolthankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com