All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 140129 by mathdanisur last updated on 04/May/21
x;y∈R+;x2+y2=2proof:3−xy⩾(x+y)xy+(x−y)2⩾2xy
Answered by mr W last updated on 05/May/21
we′llusea+b⩾2abx2+y2=2⇒x=2cosθ>0⇒y=2sinθ>0(x+y)xy+(x−y)2=2(cosθ+sinθ)2cosθsinθ+2(cosθ−sinθ)2=(cosθ+sinθ)2cosθsinθ+2−4cosθsinθ⩽(cosθ+sinθ)(cosθ+sinθ)+2−4cosθsinθ=1+2cosθsinθ+2−4cosθsinθ=3−2cosθsinθ=3−xy(x+y)xy+(x−y)2=(cosθ+sinθ)2cosθsinθ+2−4cosθsinθ⩾2cosθsinθ2cosθsinθ+2−4cosθsinθ=4cosθsinθ+2−4cosθsinθ=2⩾2sin2θ=2×2cosθsinθ=2xy
Commented by mathdanisur last updated on 05/May/21
coolthankyousir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com