Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 140138 by henderson last updated on 04/May/21

Answered by mr W last updated on 04/May/21

Commented by mr W last updated on 04/May/21

yellow angle x=α+β+90°

yellowanglex=α+β+90°

Commented by mr W last updated on 04/May/21

Method I:

MethodI:

Commented by mr W last updated on 04/May/21

Commented by mr W last updated on 04/May/21

it can be easily proved that the  red triangle is an isosceles right−  angled triangle, therefore  α+β=45°  ⇒x=α+β+90°=135°

itcanbeeasilyprovedthattheredtriangleisanisoscelesrightangledtriangle,thereforeα+β=45°x=α+β+90°=135°

Commented by mr W last updated on 04/May/21

Method II:  tan α=((a−b)/(a+b))  tan β=(b/a)  tan (α+β)=((((a−b)/(a+b))+(b/a))/(1−((a−b)/(a+b))×(b/a)))        =((a^2 −ab+ab+b^2 )/(a^2 +ab−ab+b^2 ))=((a^2 +b^2 )/(a^2 +b^2 ))=1  ⇒α+β=45°  ⇒x=α+β+90°=135°

MethodII:tanα=aba+btanβ=batan(α+β)=aba+b+ba1aba+b×ba=a2ab+ab+b2a2+abab+b2=a2+b2a2+b2=1α+β=45°x=α+β+90°=135°

Terms of Service

Privacy Policy

Contact: info@tinkutara.com