Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 14014 by tawa tawa last updated on 26/May/17

∫cos^n (x)  dx  please i need workings.

cosn(x)dxpleaseineedworkings.

Answered by mrW1 last updated on 26/May/17

I_n =∫cos^n (x)  dx=∫cos^(n−1)  (x) dsin (x)  using ∫udv=uv−∫vdu  =sin (x) cos^(n−1)  (x)+(n−1)∫sin^2  (x) cos^(n−2)  (x)dx  =sin (x) cos^(n−1)  (x)+(n−1)∫[1−cos^2  (x)] cos^(n−2)  (x)dx  =sin (x) cos^(n−1)  (x)+(n−1)∫cos^(n−2)  (x) dx−(n−1)∫cos^n  (x) dx  ⇒I_n =sin (x) cos^(n−1)  (x)+(n−1)∫cos^(n−2)  (x) dx−(n−1)I_n   ⇒nI_n =sin (x) cos^(n−1)  (x)+(n−1)I_(n−2)   ⇒I_n =(1/n)sin (x) cos^(n−1)  (x)+((n−1)/n)I_(n−2)   ⇒I_(n−2) =(1/(n−2))sin (x) cos^(n−3)  (x)+((n−3)/(n−2))I_(n−4)   ...... if n=even ....  ⇒I_2 =(1/2)sin (x) cos (x)+(1/2)I_0   ⇒I_0 =∫dx=x+C    ...... if n=odd ....  ⇒I_3 =(1/3)sin (x) cos^2  (x)+(2/3)I_1   ⇒I_1 =∫cos (x) dx=sin (x)+C

In=cosn(x)dx=cosn1(x)dsin(x)usingudv=uvvdu=sin(x)cosn1(x)+(n1)sin2(x)cosn2(x)dx=sin(x)cosn1(x)+(n1)[1cos2(x)]cosn2(x)dx=sin(x)cosn1(x)+(n1)cosn2(x)dx(n1)cosn(x)dxIn=sin(x)cosn1(x)+(n1)cosn2(x)dx(n1)InnIn=sin(x)cosn1(x)+(n1)In2In=1nsin(x)cosn1(x)+n1nIn2In2=1n2sin(x)cosn3(x)+n3n2In4......ifn=even....I2=12sin(x)cos(x)+12I0I0=dx=x+C......ifn=odd....I3=13sin(x)cos2(x)+23I1I1=cos(x)dx=sin(x)+C

Commented by tawa tawa last updated on 26/May/17

God bless you sir.

Godblessyousir.

Commented by mrW1 last updated on 27/May/17

If n is even we get:  I_n =∫cos^n  (x) dx  =(1/n)sin (x) cos^(n−1)  (x)  +((n−1)/n)∙(1/(n−2))sin (x) cos^(n−3)  (x)  +((n−1)/n)∙((n−3)/(n−2))∙(1/(n−4))sin (x) cos^(n−5)  (x)  +......  +((n−1)/n)∙((n−3)/(n−2))∙((n−5)/(n−4))∙∙∙(5/6)∙(1/4)sin (x) cos^3  (x)  +((n−1)/n)∙((n−3)/(n−2))∙((n−5)/(n−4))∙∙∙(5/6)∙(3/4)∙(1/2)sin (x) cos (x)  +((n−1)/n)∙((n−3)/(n−2))∙((n−5)/(n−4))∙∙∙(5/6)∙(3/4)∙(1/2)x+C  =𝚺_(k=1) ^(n/2) (((n−1)(n−3)∙∙∙(n−2k+3)^(=1 if k=1) )/(n(n−2)∙∙∙(n−2k+2)))∙ sin (x) cos^(n−2k+1)  (x)  +(((n−1)!!)/(n!!))x+C    if n is odd we get:  I_n =∫cos^n  (x) dx  =(1/n) sin (x) cos^(n−1)  (x)  +((n−1)/n)∙(1/(n−2)) sin (x) cos^(n−3)  (x)  +((n−1)/n)∙((n−3)/(n−2))∙(1/(n−4)) sin (x) cos^(n−5)  (x)  +......  +((n−1)/n)∙((n−3)/(n−2))∙((n−5)/(n−4))∙∙∙(4/5)∙(1/3) sin (x) cos^2  (x)  +((n−1)/n)∙((n−3)/(n−2))∙((n−5)/(n−4))∙∙∙(4/5)∙(2/3)∙(1/1) sin (x) cos^0  (x)+C  =𝚺_(k=1) ^((n+1)/2) (((n−1)(n−3)∙∙∙(n−2k+1)^(=1 if k=1) )/(n(n−2)∙∙∙(n−2k+2)))∙ sin (x) cos^(n−2k+1)  (x)+C

Ifnisevenweget:In=cosn(x)dx=1nsin(x)cosn1(x)+n1n1n2sin(x)cosn3(x)+n1nn3n21n4sin(x)cosn5(x)+......+n1nn3n2n5n45614sin(x)cos3(x)+n1nn3n2n5n4563412sin(x)cos(x)+n1nn3n2n5n4563412x+C=n2k=1(n1)(n3)(n2k+3)=1ifk=1n(n2)(n2k+2)sin(x)cosn2k+1(x)+(n1)!!n!!x+Cifnisoddweget:In=cosn(x)dx=1nsin(x)cosn1(x)+n1n1n2sin(x)cosn3(x)+n1nn3n21n4sin(x)cosn5(x)+......+n1nn3n2n5n44513sin(x)cos2(x)+n1nn3n2n5n4452311sin(x)cos0(x)+C=n+12k=1(n1)(n3)(n2k+1)=1ifk=1n(n2)(n2k+2)sin(x)cosn2k+1(x)+C

Commented by tawa tawa last updated on 27/May/17

God bless you sir.

Godblessyousir.

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 27/May/17

I_n =∫cos^2 x.cos^(n−2) xdx=  =∫cos^(n−2) xdx−∫sin^2 x.cos^(n−2) xdx=  =I_(n−2) −[((−1)/(n−1))sinx.cos^(n−1) x+(1/(n−1))∫cosx.cos^(n−1) xdx=  =I_(n−2) +(1/(n−1))sinx.cos^(n−1) x−(1/(n−1))I_n +C.  ⇒I_n +(1/(n−1))I_n =I_(n−2) +(1/(n−1))sinx.cos^(n−1) x+C ⇒  (n/(n−1))I_n =I_(n−2) +(1/(n−1))sinx.cos^(n−1) x+C  ⇒I_n =((n−1)/n).I_(n−2) +(1/n)sinx.cos^(n−1) x+C.  0)I_0 =∫dx=x+C.  1)I_1 =∫cosxdx=sinx+C  2)I_2 =∫cos^2 xdx=(1/2)x+(1/4)sin2x+C  3)n>2⇒formula given above.  example:I_3   I_3 =∫cos^3 xdx=∫cosx(1−sin^2 x)dx=  =sinx−(1/3)sin^3 x+C  I_3 =((3−1)/3)I_1 +(1/3)sinx.cos^2 x=(2/3)I_1 +(1/3)sinx.cos^2 x=  =(2/3)sinx+(1/3)sinx(1−sin^2 x)=sinx−(1/3)sin^3 x+C

In=cos2x.cosn2xdx==cosn2xdxsin2x.cosn2xdx==In2[1n1sinx.cosn1x+1n1cosx.cosn1xdx==In2+1n1sinx.cosn1x1n1In+C.In+1n1In=In2+1n1sinx.cosn1x+Cnn1In=In2+1n1sinx.cosn1x+CIn=n1n.In2+1nsinx.cosn1x+C.0)I0=dx=x+C.1)I1=cosxdx=sinx+C2)I2=cos2xdx=12x+14sin2x+C3)n>2formulagivenabove.example:I3I3=cos3xdx=cosx(1sin2x)dx==sinx13sin3x+CI3=313I1+13sinx.cos2x=23I1+13sinx.cos2x==23sinx+13sinx(1sin2x)=sinx13sin3x+C

Commented by tawa tawa last updated on 27/May/17

God bless you sir.

Godblessyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com