All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 140177 by liberty last updated on 05/May/21
solutionsetequationsin6x+cos6x=14sin22x
Answered by som(math1967) last updated on 05/May/21
(sin2x+cos2x)3−3sin2xcos2x(sin2x+cos2x)=14sin22x1−34(2sinxcosx)2=14sin22x1=34sin22x+14sin22x⇒sin22x=1sin2x=±1whensin2x=1x=(4n+1)π4sin2x=−1x=(4n−1)π4
Answered by liberty last updated on 05/May/21
⇒sin6x+cos6x=14.4sin2xcos2x⇒(sin2x+cos2x)(sin4x−sin2xcos2x+cos4x)=(sinxcosx)2⇒1−3sin2xcos2x=sin2xcos2x⇒4sin2xcos2x=1⇒(sin2x+1)(sin2x−1)=0⇒{sin2x=−1sin2x=1⇒{x=3π4+nπx=π4+nπ
Terms of Service
Privacy Policy
Contact: info@tinkutara.com