Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140194 by mnjuly1970 last updated on 05/May/21

       please  integrate::       f(x)=∫_0 ^( 1) {(1/z)log(((z^2 +2zcos(x)+1)/((z+1)^2 )))}dz

pleaseintegrate::f(x)=01{1zlog(z2+2zcos(x)+1(z+1)2)}dz

Answered by Dwaipayan Shikari last updated on 05/May/21

∫_0 ^1 ((log(z^2 +2zcosx+1))/z)−2((log(z+1))/z)dz  =∫_0 ^1 ((log(1+ze^(ix) )+log(1+ze^(−ix) ))/z)−2Σ(((−1)^(n+1) )/n^2 )  =Σ∫_0 ^1 (−1)^(n+1) (1/n)( ((z^n e^(inx) )/z)+((z^n e^(−inx) )/z))dz−(π^2 /6)  =2Σ(−1)^(n+1) ((cos(nx))/n^2 )−(π^2 /6)=2ξ−(π^2 /6)=−(x^2 /2)  ∫_0 ^x Σ(−1)^(n+1) ((sin(nx))/n^2 )dx=(π^2 /(12))−Σ_(n=1) ^∞ (((−1)^(n+1) cos(nx))/n^2 )  ⇒∫_0 ^x (x/2)dx=(π^2 /(12))−ξ⇒ξ=(π^2 /(12))−(x^2 /4)

01log(z2+2zcosx+1)z2log(z+1)zdz=01log(1+zeix)+log(1+zeix)z2Σ(1)n+1n2=Σ01(1)n+11n(zneinxz+zneinxz)dzπ26=2Σ(1)n+1cos(nx)n2π26=2ξπ26=x220xΣ(1)n+1sin(nx)n2dx=π212n=1(1)n+1cos(nx)n20xx2dx=π212ξξ=π212x24

Commented by mnjuly1970 last updated on 05/May/21

perfect and nice solution  thank you...

perfectandnicesolutionthankyou...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com