All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 140200 by qaz last updated on 05/May/21
∫0∞(lnxx−1)3dx=π2
Commented by Ar Brandon last updated on 05/May/21
Φ=∫0∞(lnxx−1)3dx=∫01(lnxx−1)3dx+∫1∞(lnxx−1)3dx=∫01ln3x(x−1)3dx+∫01xln3x(x−1)3dx=∫01ln3x(x−1)2dx+2∫01ln3x(x−1)3dx=[−ln3xx−1+3∫ln2xx(x−1)dx]01+2[−ln3x2(x−1)2+32∫ln2xx(x−1)2dx]01=[−ln3xx−1−ln3x(x−1)2]01−3[∫ln2xxdx−∫ln2xx−1dx]01−3[∫ln2xx(x−1)dx−∫ln2x(x−1)2dx]01=−ln3x+3ψ″(1)+3[∫ln2xxdx−∫ln2xx−1dx]−3[−ln2xx−1+2∫lnxx(x−1)dx]=−ln3x+3ψ″(1)+ln3x−3ψ″(1)+3ln2xx−1−6[∫lnxxdx+∫lnxx−1dx]=3ln2xx−1−3ln2x−6ψ′(1)=6∑∞n=01(n+1)2=6ζ(2)=π2
Answered by mathmax by abdo last updated on 05/May/21
I=∫0∞log3x(1−x)3dx⇒I=−∫01log3x(1−x)3dx−∫1∞log3x(1−x)3dx(→x=1t)=−∫01log3x(1−x)3+∫01−log3t(1−1t)3(−dtt2)=−∫01log3x(1−x)3dx−∫01tlog3t(1−t)3dt=−∫01(1+x)log3x(1−x)3dxwehave11−x=∑n=0∞xn⇒1(1−x)2=∑n=1∞nxn−1⇒2(1−x)(1−x)4=∑n=2∞n(n−1)xn−2⇒2(1−x)3=∑n=2∞n(n−1)xn−2⇒I=−12∫01∑n=2∞n(n−1)xn−2(1+x)log3xdx=−12∑n=2∞n(n−1)∫01(xn−2+xn−1)log3xdx=−12∑n=2∞n(n−1)XnXn=∫01(xn−2+xn−1)log3xdx=[xn−1n−1+xnn)log3x]01−∫01(xn−1n−1+xnn)3log2xdxx=−3∫01(xn−2n−1+xn−1n)log2xdx=−3{[xn−1(n−1)2+xnn2)log2x]01−∫01(xn−1(n−1)2+xnn2)2logxxdx=6∫01(xn−2(n−1)2+xn−1n2)logxdx=6{[(xn−1(n−1)3+xnn3)logx]01−∫01(xn−1(n−1)3+xnn3)dxx=−6∫01(xn−2(n−1)3+xn−1n3)dx=−6[1(n−1)4xn−1+1n4xn]01=−6(1(n−1)4+1n4)⇒I=3∑n=2∞n(n−1)(1(n−1)4+1n4)=3∑n=2∞n(n−1)3+3∑n=2∞n−1n3=3∑n=1∞n+1n3+3∑n=1∞n−1n3=6∑n=1∞1n2=6.π26=π2⇒∫0∞(logxx−1)3=π2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com