Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140200 by qaz last updated on 05/May/21

∫_0 ^∞ (((lnx)/(x−1)))^3 dx=π^2

0(lnxx1)3dx=π2

Commented by Ar Brandon last updated on 05/May/21

Φ=∫_0 ^∞ (((lnx)/(x−1)))^3 dx=∫_0 ^1 (((lnx)/(x−1)))^3 dx+∫_1 ^∞ (((lnx)/(x−1)))^3 dx      =∫_0 ^1 ((ln^3 x)/((x−1)^3 ))dx+∫_0 ^1 ((xln^3 x)/((x−1)^3 ))dx      =∫_0 ^1 ((ln^3 x)/((x−1)^2 ))dx+2∫_0 ^1 ((ln^3 x)/((x−1)^3 ))dx      =[−((ln^3 x)/(x−1))+3∫((ln^2 x)/(x(x−1)))dx]_0 ^1 +2[−((ln^3 x)/(2(x−1)^2 ))+(3/2)∫((ln^2 x)/(x(x−1)^2 ))dx]_0 ^1       =[−((ln^3 x)/(x−1))−((ln^3 x)/((x−1)^2 ))]_0 ^1 −3[∫((ln^2 x)/x)dx−∫((ln^2 x)/(x−1))dx]_0 ^1 −3[∫((ln^2 x)/(x(x−1)))dx−∫((ln^2 x)/((x−1)^2 ))dx]_0 ^1       =−ln^3 x+3ψ′′(1)+3[∫((ln^2 x)/x)dx−∫((ln^2 x)/(x−1))dx]−3[−((ln^2 x)/(x−1))+2∫((lnx)/(x(x−1)))dx]      =−ln^3 x+3ψ′′(1)+ln^3 x−3ψ′′(1)+((3ln^2 x)/(x−1))−6[∫((lnx)/x)dx+∫((lnx)/(x−1))dx]      =((3ln^2 x)/(x−1))−3ln^2 x−6ψ′(1)=6Σ_(n=0) ^∞ (1/((n+1)^2 ))=6ζ(2)=π^2

Φ=0(lnxx1)3dx=01(lnxx1)3dx+1(lnxx1)3dx=01ln3x(x1)3dx+01xln3x(x1)3dx=01ln3x(x1)2dx+201ln3x(x1)3dx=[ln3xx1+3ln2xx(x1)dx]01+2[ln3x2(x1)2+32ln2xx(x1)2dx]01=[ln3xx1ln3x(x1)2]013[ln2xxdxln2xx1dx]013[ln2xx(x1)dxln2x(x1)2dx]01=ln3x+3ψ(1)+3[ln2xxdxln2xx1dx]3[ln2xx1+2lnxx(x1)dx]=ln3x+3ψ(1)+ln3x3ψ(1)+3ln2xx16[lnxxdx+lnxx1dx]=3ln2xx13ln2x6ψ(1)=6n=01(n+1)2=6ζ(2)=π2

Answered by mathmax by abdo last updated on 05/May/21

I =∫_0 ^∞  ((log^3 x)/((1−x)^3 ))dx ⇒I =−∫_0 ^1  ((log^3 x)/((1−x)^3 ))dx−∫_1 ^∞  ((log^3 x)/((1−x)^3 ))dx(→x=(1/t))  =−∫_0 ^1  ((log^3 x)/((1−x)^3 ))+∫_0 ^1  ((−log^3 t)/((1−(1/t))^3 ))(−(dt/t^2 ))  =−∫_0 ^1  ((log^3 x)/((1−x)^3 ))dx−∫_0 ^1  ((tlog^3 t)/((1−t)^3 )) dt  =−∫_0 ^1 (((1+x)log^3 x)/((1−x)^3 ))dx  we have (1/(1−x))=Σ_(n=0) ^∞  x^n  ⇒(1/((1−x)^2 ))=Σ_(n=1) ^∞ nx^(n−1)   ⇒((2(1−x))/((1−x)^4 )) =Σ_(n=2) ^∞ n(n−1)x^(n−2)  ⇒(2/((1−x)^3 )) =Σ_(n=2) ^∞  n(n−1)x^(n−2)   ⇒  I =−(1/2)∫_0 ^1 Σ_(n=2) ^∞ n(n−1)x^(n−2)  (1+x)log^3 x dx  =−(1/2)Σ_(n=2) ^∞  n(n−1)∫_0 ^1 (x^(n−2)  +x^(n−1) )log^3 xdx  =−(1/2)Σ_(n=2) ^∞ n(n−1) X_n   X_n =∫_0 ^1  (x^(n−2)  +x^(n−1) )log^3 xdx  =[(x^(n−1) /(n−1))+(x^n /n))log^3 x]_0 ^1 −∫_0 ^1 ((x^(n−1) /(n−1))+(x^n /n))3log^2 x (dx/x)  =−3 ∫_0 ^1  ((x^(n−2) /(n−1)) +(x^(n−1) /n))log^2 x dx  =−3{  [(x^(n−1) /((n−1)^2 ))+(x^n /n^2 ))log^2 x]_0 ^1 −∫_0 ^1 ((x^(n−1) /((n−1)^2 ))+(x^n /n^2 ))((2logx)/x)dx  =6 ∫_0 ^1 ((x^(n−2) /((n−1)^2 )) +(x^(n−1) /n^2 ))log xdx  =6{[((x^(n−1) /((n−1)^3 )) +(x^n /n^3 ))logx]_0 ^1 −∫_0 ^1 ((x^(n−1) /((n−1)^3 ))+(x^n /n^3 ))(dx/x)  =−6 ∫_0 ^1 ( (x^(n−2) /((n−1)^3 )) +(x^(n−1) /n^3 ))dx =−6[(1/((n−1)^4 ))x^(n−1)  +(1/n^4 )x^n ]_0 ^1   =−6((1/((n−1)^4 )) +(1/n^4 )) ⇒  I =3 Σ_(n=2) ^∞ n(n−1)((1/((n−1)^4 ))+(1/n^4 ))  =3 Σ_(n=2) ^∞  (n/((n−1)^3 )) +3 Σ_(n=2) ^∞  ((n−1)/n^3 )  =3 Σ_(n=1) ^∞  ((n+1)/n^3 ) +3 Σ_(n=1) ^∞  ((n−1)/n^3 )  =6 Σ_(n=1) ^∞  (1/n^2 ) =6.(π^2 /6)=π^2  ⇒ ∫_0 ^∞  (((logx)/(x−1)))^3  =π^2

I=0log3x(1x)3dxI=01log3x(1x)3dx1log3x(1x)3dx(x=1t)=01log3x(1x)3+01log3t(11t)3(dtt2)=01log3x(1x)3dx01tlog3t(1t)3dt=01(1+x)log3x(1x)3dxwehave11x=n=0xn1(1x)2=n=1nxn12(1x)(1x)4=n=2n(n1)xn22(1x)3=n=2n(n1)xn2I=1201n=2n(n1)xn2(1+x)log3xdx=12n=2n(n1)01(xn2+xn1)log3xdx=12n=2n(n1)XnXn=01(xn2+xn1)log3xdx=[xn1n1+xnn)log3x]0101(xn1n1+xnn)3log2xdxx=301(xn2n1+xn1n)log2xdx=3{[xn1(n1)2+xnn2)log2x]0101(xn1(n1)2+xnn2)2logxxdx=601(xn2(n1)2+xn1n2)logxdx=6{[(xn1(n1)3+xnn3)logx]0101(xn1(n1)3+xnn3)dxx=601(xn2(n1)3+xn1n3)dx=6[1(n1)4xn1+1n4xn]01=6(1(n1)4+1n4)I=3n=2n(n1)(1(n1)4+1n4)=3n=2n(n1)3+3n=2n1n3=3n=1n+1n3+3n=1n1n3=6n=11n2=6.π26=π20(logxx1)3=π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com