Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140202 by qaz last updated on 05/May/21

∫_0 ^∞ (((lnx)/(x−1)))^2 dx=(2/3)π^2

0(lnxx1)2dx=23π2

Answered by mathmax by abdo last updated on 05/May/21

Φ =∫_0 ^∞  ((log^2 x)/((1−x)^2 ))dx    ⇒Φ=∫_0 ^1  ((log^2 x)/((1−x)^2 ))dx +∫_1 ^∞  ((log^2 x)/((1−x)^2 ))dx(→x=(1/t))  =∫_0 ^1  ((log^2 x)/((1−x)^2 ))dx−∫_0 ^1  ((log^2 t)/((1−(1/t))^2 ))(−(dt/t^2 )) =2∫_0 ^1  ((log^2 x)/((1−x)^2 ))dx we have  (1/(1−x)) =Σ_(n=0) ^∞  x^n  ⇒(1/((1−x)^2 )) =Σ_(n=1) ^∞  nx^(n−1)    (by derivation) ⇒  (1/((1−x)^2 ))=Σ_(n=1) ^∞  nx^(n−1)  ⇒Φ =2 ∫_0 ^1  Σ_(n=1) ^∞  nx^(n−1)  log^2 x dx  =2 Σ_(n=1) ^∞  n U_n     with U_n =∫_0 ^1  x^(n−1)  log^2  xdx by parts  U_n =[(x^n /n)log^2 x]_0 ^1 −∫_0 ^1  (x^n /n)((2logx)/x)dx =−(2/n) ∫_0 ^1  x^(n−1) logx dx  =−(2/n)( [(x^n /n)logx]_0 ^1 −∫_0 ^1  (x^n /n)(dx/x)) =−(2/n)(−(1/n) ∫_0 ^1  x^(n−1) dx)  =(2/n^3 ) ⇒Φ =2 Σ_(n=1) ^∞  n×(2/n^3 ) =4 Σ_(n=1) ^∞  (1/n^2 ) =4×(π^2 /6) =((2π^2 )/3) ⇒  ∫_0 ^∞   (((logx)/(x−1)))^2 dx =(2/3)π^2

Φ=0log2x(1x)2dxΦ=01log2x(1x)2dx+1log2x(1x)2dx(x=1t)=01log2x(1x)2dx01log2t(11t)2(dtt2)=201log2x(1x)2dxwehave11x=n=0xn1(1x)2=n=1nxn1(byderivation)1(1x)2=n=1nxn1Φ=201n=1nxn1log2xdx=2n=1nUnwithUn=01xn1log2xdxbypartsUn=[xnnlog2x]0101xnn2logxxdx=2n01xn1logxdx=2n([xnnlogx]0101xnndxx)=2n(1n01xn1dx)=2n3Φ=2n=1n×2n3=4n=11n2=4×π26=2π230(logxx1)2dx=23π2

Answered by Ar Brandon last updated on 05/May/21

=∫_0 ^1 ((ln^2 x)/((1−x)^2 ))dx+∫_0 ^1 ((ln^2 x)/((1−x)^2 ))dx=2∫_0 ^1 ((ln^2 x)/((1−x)^2 ))dx  =2[−((ln^2 x)/(1−x))+2∫_0 ^1 ((lnx)/(x(1−x)))dx]_0 ^1   =((2ln^2 x)/(x−1))+4∫_0 ^1 [((lnx)/x)+((lnx)/(1−x))]dx  =((2ln^2 x)/(x−1))+2ln^2 x+4∫_0 ^1 ((lnx)/(1−x))dx=−4ψ′(1)  =4Σ_(n=0) ^∞ (1/((n+1)^2 ))=4ζ(2)=4×(π^2 /6)=((2π^2 )/3)

=01ln2x(1x)2dx+01ln2x(1x)2dx=201ln2x(1x)2dx=2[ln2x1x+201lnxx(1x)dx]01=2ln2xx1+401[lnxx+lnx1x]dx=2ln2xx1+2ln2x+401lnx1xdx=4ψ(1)=4n=01(n+1)2=4ζ(2)=4×π26=2π23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com