Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 140378 by benjo_mathlover last updated on 07/May/21

(√(sin^4 x+4cos^2 x))−(√(cos^4 x+4sin^2 x)) = (1/2)   for x∈ [ 0,2π ]

sin4x+4cos2xcos4x+4sin2x=12forx[0,2π]

Commented by john_santu last updated on 07/May/21

(√(sin^4 x+4cos^2 x)) > (√(cos^4 x+4sin^2 x))  ⇒sin^2 x(sin^2 x−4) > cos^2 x(cos^2 x−4)  ⇒sin^2 x >cos^2 x   ⇒sin^2 x >1−sin^2 x  ((√2) sin x−1)((√2) sin x+1)>0  ⇒ sin x <−(1/( (√2))) ∪ sin x > (1/( (√2)))

sin4x+4cos2x>cos4x+4sin2xsin2x(sin2x4)>cos2x(cos2x4)sin2x>cos2xsin2x>1sin2x(2sinx1)(2sinx+1)>0sinx<12sinx>12

Answered by john_santu last updated on 07/May/21

(√(sin^4 x+4−4sin^2 x)) −(√(cos^4 x+4−4cos^2 x)) =(1/2)  (√((2−sin^2 x)^2 ))−(√((2−cos^2 x)^2 )) =(1/2)  2−sin^2 x+cos^2 x−2 = (1/2)  cos  2x = (1/2)   cos 2x = cos (π/3)   2x= { ((−(π/3) +2nπ)),(((π/3)+2nπ)) :}⇔  { ((x=−(π/6)+nπ)),((x=(π/6)+nπ)) :}  x = { (π/6) , ((5π)/6) , ((7π)/3) , ((11π)/6) }

sin4x+44sin2xcos4x+44cos2x=12(2sin2x)2(2cos2x)2=122sin2x+cos2x2=12cos2x=12cos2x=cosπ32x={π3+2nππ3+2nπ{x=π6+nπx=π6+nπx={π6,5π6,7π3,11π6}

Answered by MJS_new last updated on 07/May/21

(√(sin^4  x +4cos^2  x))−(√(cos^4  x +4sin^2  x))=(1/2)  let t=tan x  (√(((t/( (√(t^2 +1)))))^4 +4((1/( (√(t^2 +1)))))^2 ))−(√(((1/( (√(t^2 +1)))))^4 +4((t/( (√(t^2 +1)))))^2 ))=(1/2)  (√((((t^2 +2)/(t^2 +1)))^2 ))−(√((((2t^2 +1)/(t^2 +1)))^2 ))=(1/2)  ((1−t^2 )/(1+t^2 ))=(1/2)  ⇒ t=±((√3)/3)=tan x  ⇒ x=(π/6)∨x=((5π)/6)∨x=((7π)/6)∨x=((11π)/6)

sin4x+4cos2xcos4x+4sin2x=12lett=tanx(tt2+1)4+4(1t2+1)2(1t2+1)4+4(tt2+1)2=12(t2+2t2+1)2(2t2+1t2+1)2=121t21+t2=12t=±33=tanxx=π6x=5π6x=7π6x=11π6

Commented by greg_ed last updated on 07/May/21

right !

right!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com