Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 140442 by EnterUsername last updated on 07/May/21

If z_1  and z_2  are complex numbers such that ∣z_2 ∣≠1 and  ∣(z_1 −2z_2 )/(2−z_1 z_2 ^� )∣=1, then ∣z_1 ∣ is equal to _____.

Ifz1andz2arecomplexnumberssuchthatz2∣≠1and(z12z2)/(2z1z¯2)∣=1,thenz1isequalto_____.

Answered by mr W last updated on 08/May/21

∣((r_1 e^(θ_1 i) −2r_2 e^(θ_2 i) )/(2−r_1 e^(θ_1 i) r_2 e^(−θ_2 i) ))∣=1  ∣(((r_1 e^((θ_1 −θ_2 )i) −2r_2 )e^(θ_2 i) )/(2−r_1 r_2 e^((θ_1 −θ_2 )i) ))∣=1  ∣(((r_1 e^(θ_3 i) −2r_2 )e^(θ_2 i) )/(2−r_1 r_2 e^(θ_3 i) ))∣=1  ∣(((√((r_1 cos θ_3 −2r_2 )^2 +(r_1 sin θ_3 )^2 ))e^(θ_4 i) e^(θ_2 i) )/( (√((2−r_1 r_2 cos θ_3 )^2 +(−r_1 r_2 sin θ_3 )^2 ))e^(θ_5 i) ))∣=1  ∣((√(r_1 ^2 +4r_2 ^2 −4r_1 r_2 cos θ_3 ))/( (√(4+r_1 ^2 r_2 ^2 −4r_1 r_2 cos θ_3 )))) e^(θ_6 i) ∣=1  ((√(r_1 ^2 +4r_2 ^2 −4r_1 r_2 cos θ_3 ))/( (√(4+r_1 ^2 r_2 ^2 −4r_1 r_2 cos θ_3 ))))=1  r_1 ^2 +4r_2 ^2 =4+r_1 ^2 r_2 ^2   r_1 ^2 (1−r_2 ^2 )=4(1−r_2 ^2 )  r_1 ^2 =4 since r_2 ≠1  ⇒r_1 =2=∣z_1 ∣

r1eθ1i2r2eθ2i2r1eθ1ir2eθ2i∣=1(r1e(θ1θ2)i2r2)eθ2i2r1r2e(θ1θ2)i∣=1(r1eθ3i2r2)eθ2i2r1r2eθ3i∣=1(r1cosθ32r2)2+(r1sinθ3)2eθ4ieθ2i(2r1r2cosθ3)2+(r1r2sinθ3)2eθ5i∣=1r12+4r224r1r2cosθ34+r12r224r1r2cosθ3eθ6i∣=1r12+4r224r1r2cosθ34+r12r224r1r2cosθ3=1r12+4r22=4+r12r22r12(1r22)=4(1r22)r12=4sincer21r1=2=∣z1

Commented by EnterUsername last updated on 12/May/21

Thank you Sir

ThankyouSir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com