Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 140601 by mathdanisur last updated on 10/May/21

∫_0 ^∞ ((log(1+z^4 ))/( (√z)(1+z)))dz

0log(1+z4)z(1+z)dz

Answered by mathmax by abdo last updated on 10/May/21

Φ=∫_0 ^∞  ((log(1+z^4 ))/( (√z)(1+z)))dz ⇒Φ=_((√z)=x)   ∫_0 ^∞  ((log(1+x^8 ))/(x(1+x^2 )))(2x)dx  =2 ∫_0 ^∞  ((log(1+x^8 ))/(x^2  +1))dx =∫_(−∞) ^(+∞)  ((log(x^8  +1))/(x^2  +1))dx let  ϕ(z)=((log(z^8  +1))/(z^2  +1)) ⇒ϕ(z)=((log(z^8  +1))/((z−i)(z+i)))  ∫_R ϕ(z)dz =2iπ Res(ϕ ,i) =2iπ×((log(i^8  +1))/(2i)) =π log(2)  this method by residus is not sure...!

Φ=0log(1+z4)z(1+z)dzΦ=z=x0log(1+x8)x(1+x2)(2x)dx=20log(1+x8)x2+1dx=+log(x8+1)x2+1dxletφ(z)=log(z8+1)z2+1φ(z)=log(z8+1)(zi)(z+i)Rφ(z)dz=2iπRes(φ,i)=2iπ×log(i8+1)2i=πlog(2)thismethodbyresidusisnotsure...!

Commented by mathmax by abdo last updated on 10/May/21

let try another way  Φ=2 ∫_0 ^∞  ((log(x^8  +1))/(x^2  +1))dx =∫_(−∞) ^(+∞)  ((log(x^8 +1))/(x^2  +1))dx  let f(a) =∫_(−∞) ^(+∞)  ((log(x^8  +a^8 ))/(x^2  +1))dx   we have f(1)=Φ  f^′ (a)=∫_(−∞) ^(+∞)  ((8a^7 )/((x^8  +a^8 )(x^2  +1)))dx =8a^7  ∫_(−∞) ^(+∞)  (dx/((x^8  +a^8 )(x^2  +1)))  x^8  +a^8  =0 ⇒((x/a))^8  =−1 =e^((2k+1)iπ)  ⇒x^8  =a^8  e^((2k+1)iπ)  ⇒  x_k =a e^(i(2k+1)(π/8))  ⇒x^8  +a^8  =Π_(k=0) ^7 (x−a e^(i(2k+1)(π/8)) )  let ϕ(z)=(1/((z^8  +a^8 )(z^2  +1))) ⇒ϕ(z)=(1/((z−i)(z+i)Π_(k=0) ^7  (z−ae^(i(2k+1)(π/8)) )))  z_k =ae^((i(2k+1)π)/8)  ⇒z_0 =a e^((iπ)/8)  ,z_1 =ae^(i((3π)/8))  ,z_2 =ae^((i5π)/8)   z_3 =a e^((i7π)/8)   ,z_4 =ae^((i9π)/8)  ,z_5 =ae^((i11π)/8)  ,z_6 =ae^((i13π)/8)  ,z_7 =ae^((i15π)/8)   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,i)+Res(ϕ ,ae^((iπ)/8) )+Res(ϕ,ae^((i3π)/8) )  +Res(ϕ,a e^((i5π)/8) )}  Res(ϕ,i)=(1/(2iΠ_(k=0) ^7 (i−ae^(i(2k+1)(π/8)) )))  ϕ(z)=(1/(z^(10)  +z^8  +a^8 z^2  +a^8 ))=(1/(p(z))) ⇒Res(ϕ ,z_i ) =(1/(p^′ (z_i )))  =(1/(10z_i ^9  +8 z_i ^7  +2a^8  z_i ))   ⇒  Res(ϕ,ae^((iπ)/8) ) =(1/(10(ae^((iπ)/8) )^9  +8(ae^((iπ)/8) )^7  +2a^8  (ae^((iπ)/8) )))  ....be continued...

lettryanotherwayΦ=20log(x8+1)x2+1dx=+log(x8+1)x2+1dxletf(a)=+log(x8+a8)x2+1dxwehavef(1)=Φf(a)=+8a7(x8+a8)(x2+1)dx=8a7+dx(x8+a8)(x2+1)x8+a8=0(xa)8=1=e(2k+1)iπx8=a8e(2k+1)iπxk=aei(2k+1)π8x8+a8=k=07(xaei(2k+1)π8)letφ(z)=1(z8+a8)(z2+1)φ(z)=1(zi)(z+i)k=07(zaei(2k+1)π8)zk=aei(2k+1)π8z0=aeiπ8,z1=aei3π8,z2=aei5π8z3=aei7π8,z4=aei9π8,z5=aei11π8,z6=aei13π8,z7=aei15π8+φ(z)dz=2iπ{Res(φ,i)+Res(φ,aeiπ8)+Res(φ,aei3π8)+Res(φ,aei5π8)}Res(φ,i)=12ik=07(iaei(2k+1)π8)φ(z)=1z10+z8+a8z2+a8=1p(z)Res(φ,zi)=1p(zi)=110zi9+8zi7+2a8ziRes(φ,aeiπ8)=110(aeiπ8)9+8(aeiπ8)7+2a8(aeiπ8)....becontinued...

Answered by Dwaipayan Shikari last updated on 10/May/21

z=u^2   2∫_0 ^∞ ((log(1+u^8 ))/(1+u^2 ))  =2∫_1 ^∞ ((log(1+u^8 ))/(1+u^2 ))du+2∫_0 ^1 ((log(1+u^8 ))/(1+u^2 ))du   u=(1/j)  =2∫_0 ^1 ((log(1+j^8 )−log(j^8 ))/(1+j^2 ))dj+2∫_0 ^1 ((log(1+u^8 ))/(1+u^2 ))du  =4∫_0 ^1 ((log(1+j^8 ))/(1+j^2 ))−16∫_0 ^1 ((log(j))/(1+j^2 ))dj  =4Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 j^(2n) log(1+j^8 )dj−∫_0 ^1 ((k^(−(3/4)) log(k))/(1−k))dk  =4Σ_(n=0) ^∞ (−1)^n (((log(2))/(2n+1))−8∫_0 ^1 (j^(2n+8) /(1+j^8 ))dj)+ψ′((1/4))  =πlog(2)−32Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 ((j^(2n+8) −j^(2n+16) )/(1−j^(16) ))dj+ψ′((1/4))  =πlog(2)−2Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 ((k^((n/8)−(7/8)) −k^((n/8)+(1/8)) )/(1−k))dk+ψ′((1/4))  =πlog(2)−2Σ_(n=0) ^∞ (−1)^n (ψ((n/8)+(9/8))−ψ((n/8)+(1/8)))+ψ′((1/4))  =πlog(2)−2Σ_(n=0) ^∞ (−1)^n ((8/(n+1)))+ψ′((1/4))  =πlog(2)−16log(2)+ψ′((1/4))

z=u220log(1+u8)1+u2=21log(1+u8)1+u2du+201log(1+u8)1+u2duu=1j=201log(1+j8)log(j8)1+j2dj+201log(1+u8)1+u2du=401log(1+j8)1+j21601log(j)1+j2dj=4n=0(1)n01j2nlog(1+j8)dj01k34log(k)1kdk=4n=0(1)n(log(2)2n+1801j2n+81+j8dj)+ψ(14)=πlog(2)32n=0(1)n01j2n+8j2n+161j16dj+ψ(14)=πlog(2)2n=0(1)n01kn878kn8+181kdk+ψ(14)=πlog(2)2n=0(1)n(ψ(n8+98)ψ(n8+18))+ψ(14)=πlog(2)2n=0(1)n(8n+1)+ψ(14)=πlog(2)16log(2)+ψ(14)

Commented by mathdanisur last updated on 11/May/21

Sir, answer 4πln((√2)+(√((2+(√2)))))  simplify, psi(1/4) pliz

Sir,answer4πln(2+(2+2))simplify,psi(1/4)pliz

Commented by mathdanisur last updated on 12/May/21

Sir, Dwaipayan Shikari pliz...

Sir,DwaipayanShikaripliz...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com