All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 140635 by Mathspace last updated on 10/May/21
find∫−∞+∞sin(2cosx)(x2−x+1)2dx
Answered by mathmax by abdo last updated on 12/May/21
Φ=∫−∞+∞sin(2cosx)(x2−x+1)2dx⇒Φ=Im(∫−∞∞e2icosx(x2−x+1)2dx)letΨ(z)=e2icosz(z2−z+1)2polesofΨ?z2−z+1=0→Δ=−3⇒z1=1+i32=eiπ3andz2=1−i32=e−iπ3⇒Ψ(z)=e2icosz(z−eiπ3)2(z−e−iπ3)2∫−∞+∞Ψ(z)dz=2iπRes(Ψ,eiπ3)andRes(Ψ,eiπ3)=limz→eiπ31(2−1)!{(z−eiπ3)2Ψ(z)}(1)=limz→eiπ3{e2icosz(z−e−iπ3)2}(1)=limz→eiπ3(−2isinze2icosz)(z−e−iπ3)2−2(z−e−iπ3)e2icosz(z−e−iπ3)4=limz→eiπ3(−2isinz)(z−e−iπ3)−2)e2icosz(z−e−iπ3)3={(2isin(π3))(−2isin(eiπ3)−2}e2icos(eiπ3)(2isin(π3))3={(i3)(−2isin(12+i32))−2}e2icos(12+i32)−8i(32)3={23sin(12+i32)−2}e2icos(12+i32)−33iweknowsinz=eiz−e−iz2i⇒sin(eiπ3)=eieiπ3−e−ieiπ32i=ei(12+i32)−e−i(12+i32)2i=e−32(cos(12)+isin(12)−e32(cos(12)−isin(12))2iresttofinichthecalculus.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com