Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140635 by Mathspace last updated on 10/May/21

find  ∫_(−∞) ^(+∞)  ((sin(2cosx))/((x^2  −x+1)^2 ))dx

find+sin(2cosx)(x2x+1)2dx

Answered by mathmax by abdo last updated on 12/May/21

Φ=∫_(−∞) ^(+∞)  ((sin(2cosx))/((x^2 −x+1)^2 ))dx ⇒Φ =Im(∫_(−∞) ^∞  (e^(2icosx) /((x^2 −x+1)^2 ))dx)  let Ψ(z)=(e^(2icosz) /((z^2 −z+1)^2 ))  poles of Ψ?  z^2 −z+1 =0 →Δ=−3 ⇒z_1 =((1+i(√3))/2) =e^((iπ)/3)  and z_2 =((1−i(√3))/2)=e^(−((iπ)/3))  ⇒  Ψ(z) =(e^(2icosz) /((z−e^((iπ)/3) )^2 (z−e^(−((iπ)/3)) )^2 ))  ∫_(−∞) ^(+∞)  Ψ(z)dz =2iπ Res(Ψ,e^((iπ)/3) ) and   Res(Ψ,e^((iπ)/3) ) =lim_(z→e^((iπ)/3) )    (1/((2−1)!)){(z−e^((iπ)/3) )^2 Ψ(z)}^((1))   =lim_(z→e^((iπ)/3) )    {(e^(2icosz) /((z−e^(−((iπ)/3)) )^2 ))}^((1))    =lim_(z→e^((iπ)/3) )    (((−2isinz e^(2icosz) )(z−e^(−((iπ)/3)) )^2 −2(z−e^(−((iπ)/3)) )e^(2icosz) )/((z−e^(−((iπ)/3)) )^4 ))  =lim_(z→e^((iπ)/3) )   (((−2isinz)(z−e^(−((iπ)/3)) )−2)e^(2icosz) )/((z−e^(−((iπ)/3)) )^3 ))  =(({(2isin((π/3)))(−2isin(e^((iπ)/3) )−2}e^(2icos(e^((iπ)/3) )) )/((2isin((π/3)))^3 ))  = (({(i(√3))(−2i sin((1/2)+i((√3)/2)))−2}e^(2icos((1/2)+((i(√3))/2))) )/(−8i(((√3)/2))^3 ))  =(({2(√3)sin((1/2)+i((√3)/2))−2}e^(2icos((1/2)+((i(√3))/2))) )/(−3(√3)i)) we know  sinz =((e^(iz) −e^(−iz) )/(2i)) ⇒sin(e^((iπ)/3) ) =((e^(ie^((iπ)/3) ) −e^(−i e^((iπ)/3) ) )/(2i))  =((e^(i((1/2)+((i(√3))/2))) −e^(−i((1/2)+((i(√3))/2))) )/(2i)) =((e^(−((√3)/2)) (cos((1/2))+isin((1/2))−e^((√3)/2) (cos((1/2))−isin((1/2))))/(2i))  rest to finich the calculus.

Φ=+sin(2cosx)(x2x+1)2dxΦ=Im(e2icosx(x2x+1)2dx)letΨ(z)=e2icosz(z2z+1)2polesofΨ?z2z+1=0Δ=3z1=1+i32=eiπ3andz2=1i32=eiπ3Ψ(z)=e2icosz(zeiπ3)2(zeiπ3)2+Ψ(z)dz=2iπRes(Ψ,eiπ3)andRes(Ψ,eiπ3)=limzeiπ31(21)!{(zeiπ3)2Ψ(z)}(1)=limzeiπ3{e2icosz(zeiπ3)2}(1)=limzeiπ3(2isinze2icosz)(zeiπ3)22(zeiπ3)e2icosz(zeiπ3)4=limzeiπ3(2isinz)(zeiπ3)2)e2icosz(zeiπ3)3={(2isin(π3))(2isin(eiπ3)2}e2icos(eiπ3)(2isin(π3))3={(i3)(2isin(12+i32))2}e2icos(12+i32)8i(32)3={23sin(12+i32)2}e2icos(12+i32)33iweknowsinz=eizeiz2isin(eiπ3)=eieiπ3eieiπ32i=ei(12+i32)ei(12+i32)2i=e32(cos(12)+isin(12)e32(cos(12)isin(12))2iresttofinichthecalculus.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com