Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 1407 by 112358 last updated on 29/Jul/15

Solve the following inequality                       ((sinx+1)/(cosx))≤1  where 0≤x<2π , cosx≠0

$${Solve}\:{the}\:{following}\:{inequality} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{sinx}+\mathrm{1}}{{cosx}}\leqslant\mathrm{1} \\ $$ $${where}\:\mathrm{0}\leqslant{x}<\mathrm{2}\pi\:,\:{cosx}\neq\mathrm{0} \\ $$

Commented by123456 last updated on 29/Jul/15

f(x)=((sin x+1)/(cos x))  f(x)≤1⇔f(x)−1≤0  g(x)=f(x)−1=((sin x+1)/(cos x))−1=tan x+sec x−1  g(x)≤0

$${f}\left({x}\right)=\frac{\mathrm{sin}\:{x}+\mathrm{1}}{\mathrm{cos}\:{x}} \\ $$ $${f}\left({x}\right)\leqslant\mathrm{1}\Leftrightarrow{f}\left({x}\right)−\mathrm{1}\leqslant\mathrm{0} \\ $$ $${g}\left({x}\right)={f}\left({x}\right)−\mathrm{1}=\frac{\mathrm{sin}\:{x}+\mathrm{1}}{\mathrm{cos}\:{x}}−\mathrm{1}=\mathrm{tan}\:{x}+\mathrm{sec}\:{x}−\mathrm{1} \\ $$ $${g}\left({x}\right)\leqslant\mathrm{0} \\ $$

Commented by112358 last updated on 30/Jul/15

x∈((π/2),2π)∩x≠((3π)/2) is correct.

$${x}\in\left(\frac{\pi}{\mathrm{2}},\mathrm{2}\pi\right)\cap{x}\neq\frac{\mathrm{3}\pi}{\mathrm{2}}\:{is}\:{correct}. \\ $$ $$ \\ $$

Commented by123456 last updated on 29/Jul/15

x∈(π/2,2π)\{3π/2}

$${x}\in\left(\pi/\mathrm{2},\mathrm{2}\pi\right)\backslash\left\{\mathrm{3}\pi/\mathrm{2}\right\} \\ $$

Commented by112358 last updated on 30/Jul/15

Good^  deduction!

$${Goo}\overset{} {{d}}\:{deduction}! \\ $$

Commented byRasheed Ahmad last updated on 31/Jul/15

Sorry I accidently deleted my   comment! There is no way to   recover! I will rewrite it soon.

$${Sorry}\:{I}\:{accidently}\:{deleted}\:{my}\: \\ $$ $${comment}!\:{There}\:{is}\:{no}\:{way}\:{to}\: \\ $$ $${recover}!\:{I}\:{will}\:{rewrite}\:{it}\:{soon}. \\ $$

Answered by Rasheed Ahmad last updated on 03/Aug/15

(Rasheed Soomro)  Case−I  Let x is in Q−I  cos x>0 ,sin x>0  ((sin x+1)/(cos x)) ≤1⇒sin x+1 ≤ cos x  ⇒sin x ≤ cos x−1  ⇒1≤ −(((1−cos x)/(sin x)))  ⇒1 ≤ −tan(x/2)....[∵ ((1−cos x)/(sin x))=tan(x/2)]  −1 ≥ tan(x/2)  ⇒tan(x/2)≤ −1           (i)  But tan(x/2)>0    [(x/2) is in Q−I]   (ii)  (i) and (ii) are contradictory.  They can′t be true simultaneously.  Hence in Q−I there is no solution.           x ∉ (0,(π/2))                               ★★★  Case−II  Let x is in Q−II  sin x>0 , cos x<0  sin x+1≥ cos x    sin x ≥ cos x −1  1 ≥−( ((1−cos x)/(sin x)) )  1≥ −tan(x/2)⇒−1≤ tan(x/2)  tan(x/2) ≥ −1..................(i)  Now (x is in Q−II)⇒((x/2) is in Q−I)  So,  tan(x/2) >0...............(ii)  (i) and (ii) have tan(x/2) >0 common for  which both are true at same time.  So x∈((π/2) , π)                             ★★★  Case−III  Let x is in Q−III  sin x < 0 , cos x < 0  Similar way of deduction leads us:  tan(x/2) ≤ −1......(i)  Now    (x is in Q−III)⇒((x/2) is in Q−II)  So tan(x/2)<0 .......(ii)  Here  intersection of (i) and (ii)  is   tan(x/2) ≤ −1  So the solution of given inequality  is ′ solution of tan(x/2) ≤ −1′  tan(x/2) ≤ −1 ⇒ (x/2) ≤ ((3π)/4)  ⇒ x ≤((3π)/2)   But cos((3π)/2) =0  So finaly  x<((3π)/2)  This covers whole Q−III       x∈(π , ((3π)/2))                               ★★★  Case−IV  Let x is in Q−IV  sin x<0 , cos x>0  In similar way as above we deduce:  tan (x/2) ≥ −1..................(i)  Now  (x is in Q−IV)⇒((x/2) is in Q−II)  Hence tan(x/2) < 0...........(ii)  (i) and (ii) may be written as:  −1≤tan (x/2) <0  tan(x/2) ∈[−1,0)       (x/2) ∈[((3π)/4) , π)         x ∈[((3π)/2) , 2π)  That is whole Q−IV including  ((3π)/2) but excuding 2π.  But cos((3π)/2)=0 so it also be excluded.  Hence    x∈(((3π)/2) , 2π)                            ★★★  Case−V  Let x is a quardantal angle  For x=(π/2) or ((3π)/2) cos x=0 which is  against the restriction cos x≠0.  For x=0 or 2π the given inequality  holds but 2π is out of domain.  Hence only 0 out of quardantal  angles is included in solution.  Thus,  Final Answer is :  x ∈{0}∪((π/2) , 2π)−{((3π)/2)}

$$\left({Rasheed}\:{Soomro}\right) \\ $$ $${Case}−{I} \\ $$ $${Let}\:{x}\:{is}\:{in}\:{Q}−{I} \\ $$ $${cos}\:{x}>\mathrm{0}\:,{sin}\:{x}>\mathrm{0} \\ $$ $$\frac{{sin}\:{x}+\mathrm{1}}{{cos}\:{x}}\:\leqslant\mathrm{1}\Rightarrow{sin}\:{x}+\mathrm{1}\:\leqslant\:{cos}\:{x} \\ $$ $$\Rightarrow{sin}\:{x}\:\leqslant\:{cos}\:{x}−\mathrm{1} \\ $$ $$\Rightarrow\mathrm{1}\leqslant\:−\left(\frac{\mathrm{1}−{cos}\:{x}}{{sin}\:{x}}\right) \\ $$ $$\Rightarrow\mathrm{1}\:\leqslant\:−{tan}\frac{{x}}{\mathrm{2}}....\left[\because\:\frac{\mathrm{1}−{cos}\:{x}}{{sin}\:{x}}={tan}\frac{{x}}{\mathrm{2}}\right] \\ $$ $$−\mathrm{1}\:\geqslant\:{tan}\frac{{x}}{\mathrm{2}} \\ $$ $$\Rightarrow{tan}\frac{{x}}{\mathrm{2}}\leqslant\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\left({i}\right) \\ $$ $${But}\:{tan}\frac{{x}}{\mathrm{2}}>\mathrm{0}\:\:\:\:\left[\frac{{x}}{\mathrm{2}}\:{is}\:{in}\:{Q}−{I}\right]\:\:\:\left({ii}\right) \\ $$ $$\left({i}\right)\:{and}\:\left({ii}\right)\:{are}\:{contradictory}. \\ $$ $${They}\:{can}'{t}\:{be}\:{true}\:{simultaneously}. \\ $$ $${Hence}\:{in}\:{Q}−{I}\:{there}\:{is}\:{no}\:{solution}. \\ $$ $$\:\:\:\:\:\:\:\:\:{x}\:\notin\:\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bigstar\bigstar\bigstar \\ $$ $${Case}−{II} \\ $$ $${Let}\:{x}\:{is}\:{in}\:{Q}−{II} \\ $$ $${sin}\:{x}>\mathrm{0}\:,\:{cos}\:{x}<\mathrm{0} \\ $$ $${sin}\:{x}+\mathrm{1}\geqslant\:{cos}\:{x}\:\: \\ $$ $${sin}\:{x}\:\geqslant\:{cos}\:{x}\:−\mathrm{1} \\ $$ $$\mathrm{1}\:\geqslant−\left(\:\frac{\mathrm{1}−{cos}\:{x}}{{sin}\:{x}}\:\right) \\ $$ $$\mathrm{1}\geqslant\:−{tan}\frac{{x}}{\mathrm{2}}\Rightarrow−\mathrm{1}\leqslant\:{tan}\frac{{x}}{\mathrm{2}} \\ $$ $${tan}\frac{{x}}{\mathrm{2}}\:\geqslant\:−\mathrm{1}..................\left({i}\right) \\ $$ $${Now}\:\left({x}\:{is}\:{in}\:{Q}−{II}\right)\Rightarrow\left(\frac{{x}}{\mathrm{2}}\:{is}\:{in}\:{Q}−{I}\right) \\ $$ $${So},\:\:{tan}\frac{{x}}{\mathrm{2}}\:>\mathrm{0}...............\left({ii}\right) \\ $$ $$\left({i}\right)\:{and}\:\left({ii}\right)\:{have}\:{tan}\frac{{x}}{\mathrm{2}}\:>\mathrm{0}\:{common}\:{for} \\ $$ $${which}\:{both}\:{are}\:{true}\:{at}\:{same}\:{time}. \\ $$ $${So}\:\boldsymbol{{x}}\in\left(\frac{\pi}{\mathrm{2}}\:,\:\pi\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bigstar\bigstar\bigstar \\ $$ $${Case}−{III} \\ $$ $${Let}\:{x}\:{is}\:{in}\:{Q}−{III} \\ $$ $${sin}\:{x}\:<\:\mathrm{0}\:,\:{cos}\:{x}\:<\:\mathrm{0} \\ $$ $${Similar}\:{way}\:{of}\:{deduction}\:{leads}\:{us}: \\ $$ $${tan}\frac{{x}}{\mathrm{2}}\:\leqslant\:−\mathrm{1}......\left({i}\right) \\ $$ $${Now} \\ $$ $$\:\:\left({x}\:{is}\:{in}\:{Q}−{III}\right)\Rightarrow\left(\frac{{x}}{\mathrm{2}}\:{is}\:{in}\:{Q}−{II}\right) \\ $$ $${So}\:{tan}\frac{{x}}{\mathrm{2}}<\mathrm{0}\:.......\left({ii}\right) \\ $$ $${Here}\:\:{intersection}\:{of}\:\left({i}\right)\:{and}\:\left({ii}\right) \\ $$ $${is}\:\:\:{tan}\frac{{x}}{\mathrm{2}}\:\leqslant\:−\mathrm{1} \\ $$ $${So}\:{the}\:{solution}\:{of}\:{given}\:{inequality} \\ $$ $${is}\:'\:{solution}\:{of}\:{tan}\frac{{x}}{\mathrm{2}}\:\leqslant\:−\mathrm{1}' \\ $$ $${tan}\frac{{x}}{\mathrm{2}}\:\leqslant\:−\mathrm{1}\:\Rightarrow\:\frac{{x}}{\mathrm{2}}\:\leqslant\:\frac{\mathrm{3}\pi}{\mathrm{4}} \\ $$ $$\Rightarrow\:{x}\:\leqslant\frac{\mathrm{3}\pi}{\mathrm{2}}\: \\ $$ $${But}\:{cos}\frac{\mathrm{3}\pi}{\mathrm{2}}\:=\mathrm{0} \\ $$ $${So}\:{finaly}\:\:{x}<\frac{\mathrm{3}\pi}{\mathrm{2}} \\ $$ $${This}\:{covers}\:{whole}\:{Q}−{III} \\ $$ $$\:\:\:\:\:{x}\in\left(\pi\:,\:\frac{\mathrm{3}\pi}{\mathrm{2}}\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bigstar\bigstar\bigstar \\ $$ $${Case}−{IV} \\ $$ $${Let}\:{x}\:{is}\:{in}\:{Q}−{IV} \\ $$ $${sin}\:{x}<\mathrm{0}\:,\:{cos}\:{x}>\mathrm{0} \\ $$ $${In}\:{similar}\:{way}\:{as}\:{above}\:{we}\:{deduce}: \\ $$ $${tan}\:\frac{{x}}{\mathrm{2}}\:\geqslant\:−\mathrm{1}..................\left({i}\right) \\ $$ $${Now} \\ $$ $$\left({x}\:{is}\:{in}\:{Q}−{IV}\right)\Rightarrow\left(\frac{{x}}{\mathrm{2}}\:{is}\:{in}\:{Q}−{II}\right) \\ $$ $${Hence}\:{tan}\frac{{x}}{\mathrm{2}}\:<\:\mathrm{0}...........\left({ii}\right) \\ $$ $$\left({i}\right)\:{and}\:\left({ii}\right)\:{may}\:{be}\:{written}\:{as}: \\ $$ $$−\mathrm{1}\leqslant{tan}\:\frac{{x}}{\mathrm{2}}\:<\mathrm{0} \\ $$ $${tan}\frac{{x}}{\mathrm{2}}\:\in\left[−\mathrm{1},\mathrm{0}\right) \\ $$ $$\:\:\:\:\:\frac{{x}}{\mathrm{2}}\:\in\left[\frac{\mathrm{3}\pi}{\mathrm{4}}\:,\:\pi\right) \\ $$ $$\:\:\:\:\:\:\:{x}\:\in\left[\frac{\mathrm{3}\pi}{\mathrm{2}}\:,\:\mathrm{2}\pi\right) \\ $$ $${That}\:{is}\:{whole}\:{Q}−{IV}\:{including} \\ $$ $$\frac{\mathrm{3}\pi}{\mathrm{2}}\:{but}\:{excuding}\:\mathrm{2}\pi. \\ $$ $${But}\:{cos}\frac{\mathrm{3}\pi}{\mathrm{2}}=\mathrm{0}\:{so}\:{it}\:{also}\:{be}\:{excluded}. \\ $$ $${Hence}\:\:\:\:{x}\in\left(\frac{\mathrm{3}\pi}{\mathrm{2}}\:,\:\mathrm{2}\pi\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bigstar\bigstar\bigstar \\ $$ $${Case}−{V} \\ $$ $${Let}\:{x}\:{is}\:{a}\:{quardantal}\:{angle} \\ $$ $${For}\:{x}=\frac{\pi}{\mathrm{2}}\:{or}\:\frac{\mathrm{3}\pi}{\mathrm{2}}\:{cos}\:{x}=\mathrm{0}\:{which}\:{is} \\ $$ $${against}\:{the}\:{restriction}\:{cos}\:{x}\neq\mathrm{0}. \\ $$ $${For}\:{x}=\mathrm{0}\:{or}\:\mathrm{2}\pi\:{the}\:{given}\:{inequality} \\ $$ $${holds}\:{but}\:\mathrm{2}\pi\:{is}\:{out}\:{of}\:{domain}. \\ $$ $${Hence}\:{only}\:\mathrm{0}\:{out}\:{of}\:{quardantal} \\ $$ $${angles}\:{is}\:{included}\:{in}\:{solution}. \\ $$ $$\boldsymbol{\mathrm{Thus}}, \\ $$ $$\boldsymbol{\mathrm{Final}}\:\boldsymbol{\mathrm{Answer}}\:{is}\:: \\ $$ $${x}\:\in\left\{\mathrm{0}\right\}\cup\left(\frac{\pi}{\mathrm{2}}\:,\:\mathrm{2}\pi\right)−\left\{\frac{\mathrm{3}\pi}{\mathrm{2}}\right\} \\ $$

Commented by123456 last updated on 03/Aug/15

f(x)=((sin x+1)/(cos x))  lim_(x→3π/2)  f(x)=0<1  this is a curious fact :)

$${f}\left({x}\right)=\frac{\mathrm{sin}\:{x}+\mathrm{1}}{\mathrm{cos}\:{x}} \\ $$ $$\underset{{x}\rightarrow\mathrm{3}\pi/\mathrm{2}} {\mathrm{lim}}\:{f}\left({x}\right)=\mathrm{0}<\mathrm{1} \\ $$ $$\left.\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\mathrm{curious}\:\mathrm{fact}\::\right) \\ $$

Commented byRasheed Ahmad last updated on 03/Aug/15

And that means f(x) is   discontinuous at x=((3π)/2) .

$${And}\:{that}\:{means}\:{f}\left({x}\right)\:{is}\: \\ $$ $${discontinuous}\:{at}\:{x}=\frac{\mathrm{3}\pi}{\mathrm{2}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com