All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 140961 by iloveisrael last updated on 14/May/21
∫10ln(x+1−x2)xdx=?
Answered by qaz last updated on 14/May/21
∫01ln(x+1−x2)xdx=∫01dy∫01dxyx+1−x2+12∫01ln(1−x)+ln(1+x)xdx=∫01dy∫01dxyx+1−x2+12(−π26+π212)=∫01dy∫0π/2coszysinz+coszdz−π224=∫01dy∫0π/2d(tanz)(ytanz+1)(tan2z+1)−π224=∫01dy∫0∞du(yu+1)(u2+1)−π224=∫0111+y2∫0∞(y2yu+1+−yu+1u2+1)du−π224=∫0111+y2(ylnyu+1u2+1∣0∞+π2)dy−π224=∫0111+y2(ylny+π2)dy−π224=−π248+π28−π224=π216−−−−−−−−−−−−−−−−−−∫01ylny1+y2dy={12ln(1+y2)lny−12∫ln(1+y2)ydy}01=−12∑∞n=1(−1)n−1n∫01y2n−1dy=−14∑∞n=1(−1)n−1n2=−π248
Answered by iloveisrael last updated on 15/May/21
withintegralparameterizedbya>0I(a)=∫01ln(ax+1−x2)xdxI′(a)=∫011ax+1−x2dxI′(a)=[aln([(a2+1)x2−1][1−x2+ax]1−x2−ax)+2arcsinx2(a2+1)]x=0x=1=alnaa2+1+π21a2+1I(1)−I(0)=∫01alnaa2+1da+π2∫011a2+1da(1)∫01alnaa2+1da=∑∞k=1(−1)k∫01a2k+1lnada=−14∑∞k=0(−1)k(k+1)2=−14η(2)=−π248(2)π2∫01da1+a2=π28I(0)=12∫01ln(1−x2)xdx=−12∑∞k=11k∫01x2k−1dx=−14∑∞k=11k2=−14ζ(2)=−π224I(1)=−π248+π28−π224=π216
Terms of Service
Privacy Policy
Contact: info@tinkutara.com