Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140961 by iloveisrael last updated on 14/May/21

 ∫_0 ^( 1)   ((ln (x+(√(1−x^2 ))))/x) dx =?

10ln(x+1x2)xdx=?

Answered by qaz last updated on 14/May/21

∫_0 ^1 ((ln(x+(√(1−x^2 ))))/x)dx  =∫_0 ^1 dy∫_0 ^1 (dx/(yx+(√(1−x^2 ))))+(1/2)∫_0 ^1 ((ln(1−x)+ln(1+x))/x)dx  =∫_0 ^1 dy∫_0 ^1 (dx/(yx+(√(1−x^2 ))))+(1/2)(−(π^2 /6)+(π^2 /(12)))  =∫_0 ^1 dy∫_0 ^(π/2) ((cos z)/(ysin z+cos z))dz−(π^2 /(24))  =∫_0 ^1 dy∫_0 ^(π/2) ((d(tan z))/((ytan z+1)(tan^2 z+1)))−(π^2 /(24))  =∫_0 ^1 dy∫_0 ^∞ (du/((yu+1)(u^2 +1)))−(π^2 /(24))  =∫_0 ^1 (1/(1+y^2 ))∫_0 ^∞ ((y^2 /(yu+1))+((−yu+1)/(u^2 +1)))du−(π^2 /(24))  =∫_0 ^1 (1/(1+y^2 ))(yln((yu+1)/( (√(u^2 +1))))∣_0 ^∞ +(π/2))dy−(π^2 /(24))  =∫_0 ^1 (1/(1+y^2 ))(ylny+(π/2))dy−(π^2 /(24))  =−(π^2 /(48))+(π^2 /8)−(π^2 /(24))  =(π^2 /(16))  −−−−−−−−−−−−−−−−−−  ∫_0 ^1 ((ylny)/(1+y^2 ))dy  ={(1/2)ln(1+y^2 )lny−(1/2)∫((ln(1+y^2 ))/y)dy}_0 ^1   =−(1/2)Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^1 y^(2n−1) dy  =−(1/4)Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 )=−(π^2 /(48))

01ln(x+1x2)xdx=01dy01dxyx+1x2+1201ln(1x)+ln(1+x)xdx=01dy01dxyx+1x2+12(π26+π212)=01dy0π/2coszysinz+coszdzπ224=01dy0π/2d(tanz)(ytanz+1)(tan2z+1)π224=01dy0du(yu+1)(u2+1)π224=0111+y20(y2yu+1+yu+1u2+1)duπ224=0111+y2(ylnyu+1u2+10+π2)dyπ224=0111+y2(ylny+π2)dyπ224=π248+π28π224=π21601ylny1+y2dy={12ln(1+y2)lny12ln(1+y2)ydy}01=12n=1(1)n1n01y2n1dy=14n=1(1)n1n2=π248

Answered by iloveisrael last updated on 15/May/21

with integral parameterized by a>0  I(a)=∫_0 ^( 1)  ((ln (ax+(√(1−x^2 ))))/x) dx   I ′(a)= ∫_0 ^( 1)  (1/(ax+(√(1−x^2 )))) dx   I ′(a) = [ ((a ln ((([(a^2 +1)x^2 −1][(√(1−x^2 ))+ax])/( (√(1−x^2 ))−ax)))+2arcsin x)/(2(a^2 +1)))]_(x=0) ^(x=1)   = ((a ln a)/(a^2 +1)) +(π/2) (1/(a^2 +1))   I(1)−I(0) = ∫_0 ^( 1)  ((a ln a)/(a^2 +1)) da +(π/2) ∫_0 ^( 1)  (1/(a^2 +1)) da  (1) ∫_0 ^( 1)  ((a ln a)/(a^2 +1)) da = Σ_(k=1) ^∞ (−1)^k  ∫_0 ^( 1)  a^(2k+1)  ln a da  = −(1/4) Σ_(k=0) ^∞  (((−1)^k )/((k+1)^2 )) = −(1/4)η(2)=−(π^2 /(48))  (2)(π/2)∫_0 ^( 1)  (da/(1+a^2 )) = (π^2 /8)  I(0) = (1/2)∫_0 ^( 1)  ((ln (1−x^2 ))/x) dx  = −(1/2) Σ_(k=1) ^∞  (1/k) ∫_0 ^( 1)  x^(2k−1)  dx   = −(1/4)Σ_(k=1) ^∞  (1/k^2 ) = −(1/4)ζ(2)=−(π^2 /(24))  I(1)= −(π^2 /(48))+(π^2 /8)−(π^2 /(24)) = (π^2 /(16))

withintegralparameterizedbya>0I(a)=01ln(ax+1x2)xdxI(a)=011ax+1x2dxI(a)=[aln([(a2+1)x21][1x2+ax]1x2ax)+2arcsinx2(a2+1)]x=0x=1=alnaa2+1+π21a2+1I(1)I(0)=01alnaa2+1da+π2011a2+1da(1)01alnaa2+1da=k=1(1)k01a2k+1lnada=14k=0(1)k(k+1)2=14η(2)=π248(2)π201da1+a2=π28I(0)=1201ln(1x2)xdx=12k=11k01x2k1dx=14k=11k2=14ζ(2)=π224I(1)=π248+π28π224=π216

Terms of Service

Privacy Policy

Contact: info@tinkutara.com