Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 140973 by EnterUsername last updated on 14/May/21

If α and β are roots of the equation 2x^2 +ax+b=0,  then one of the roots of the equation 2(αx+β)^2 +  a(αx+β)+b=0 is  (A) 0                                       (B) ((α+2b)/α^2 )  (C) ((aα+b)/(2α^2 ))                              (D) ((aα−2b)/(2α^2 ))

Ifαandβarerootsoftheequation2x2+ax+b=0,thenoneoftherootsoftheequation2(αx+β)2+a(αx+β)+b=0is(A)0(B)α+2bα2(C)aα+b2α2(D)aα2b2α2

Answered by TheSupreme last updated on 15/May/21

α=((−a+(√Δ))/4)  β=((−a−(√Δ))/4)  2(αx+β)^2 +a(αx+β)+b=0  αx+β=α  x=((α−β)/α)  αx+β=β  x=0 (A)

α=a+Δ4β=aΔ42(αx+β)2+a(αx+β)+b=0αx+β=αx=αβααx+β=βx=0(A)

Commented by EnterUsername last updated on 19/May/21

Thanks so much

Thankssomuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com