Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140976 by Mathspace last updated on 14/May/21

find ∫_0 ^π  (dx/((2−cosx−sinx)^2 ))

find0πdx(2cosxsinx)2

Answered by Ar Brandon last updated on 14/May/21

I=∫_0 ^π (dx/((2−cosx−sinx)^2 )) , t=tan(x/2)     =∫_0 ^∞ ((2dt)/((2−((1−t^2 )/(1+t^2 ))−((2t)/(1+t^2 )))^2 ))∙(1/(1+t^2 ))=2∫_0 ^∞ ((t^2 +1)/((3t^2 −2t+1)^2 ))dt     =(2/3)∫_0 ^∞ ((3t^2 −2t+1)/((3t^2 −2t+1)^2 ))dt+2∫_0 ^∞ ((2t/3+2/3)/((3t^2 −2t+1)^2 ))dt     =(2/3)∫_0 ^∞ (dt/(3t^2 −2t+1))+(4/3)∫_0 ^∞ ((t+1)/((3t^2 −2t+1)^2 ))dt     =(2/3)∫_0 ^∞ (dt/(3t^2 −2t+1))+[(4/3)∙((t−1/2)/(3t^2 −2t+1))+(4/3)∫(dt/(3t^2 −2t+1))]_0 ^∞      =2∫_0 ^∞ (dt/(3t^2 −2t+1))+(2/3)∙[((2t−1)/(3t^2 −2t+1))]_0 ^∞      =(2/3)∫_0 ^∞ (dt/(t^2 −(2/3)t+(1/3)))+(2/3)=(2/3)∫_0 ^∞ (dt/((t−(1/3))^2 +(2/9)))+(2/3)     =(2/3)∙[(3/( (√2)))arctan(((3t−1)/( (√2))))]_0 ^∞ +(2/3)=(√2)((π/2)+tan^(−1) (((√2)/2)))+(2/3)     ≈3.758527887

I=0πdx(2cosxsinx)2,t=tanx2=02dt(21t21+t22t1+t2)211+t2=20t2+1(3t22t+1)2dt=2303t22t+1(3t22t+1)2dt+202t/3+2/3(3t22t+1)2dt=230dt3t22t+1+430t+1(3t22t+1)2dt=230dt3t22t+1+[43t1/23t22t+1+43dt3t22t+1]0=20dt3t22t+1+23[2t13t22t+1]0=230dtt223t+13+23=230dt(t13)2+29+23=23[32arctan(3t12)]0+23=2(π2+tan1(22))+233.758527887

Commented by Ar Brandon last updated on 14/May/21

Mr MJS′ Ostrogradsky (line4→line5)

MrMJSOstrogradsky(line4line5)

Commented by Ar Brandon last updated on 14/May/21

Commented by Tawa11 last updated on 06/Nov/21

Weldone sir

Weldonesir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com