Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 141077 by Opredador last updated on 15/May/21

 Calculate  the  lim_(x→1) ((((√x^x ) − (√x))/(x^x  − x))).

$$\:{Calculate}\:\:{the}\:\:\underset{{x}\rightarrow\mathrm{1}} {{lim}}\left(\frac{\sqrt{{x}^{{x}} }\:−\:\sqrt{{x}}}{{x}^{{x}} \:−\:{x}}\right). \\ $$

Answered by EDWIN88 last updated on 15/May/21

 lim_(x→1)  (((√x^x )−(√x))/(x^x −x)) = lim_(x→1)  (((√x^x )−(√x))/(((√x^x )+(√x) )((√x^x )−(√x))))  = lim_(x→1)  (1/( (√x^x ) +(√x))) = (1/2)

$$\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}^{\mathrm{x}} }−\sqrt{\mathrm{x}}}{\mathrm{x}^{\mathrm{x}} −\mathrm{x}}\:=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\cancel{\sqrt{\mathrm{x}^{\mathrm{x}} }−\sqrt{\mathrm{x}}}}{\left(\sqrt{\mathrm{x}^{\mathrm{x}} }+\sqrt{\mathrm{x}}\:\right)\cancel{\left(\sqrt{\mathrm{x}^{\mathrm{x}} }−\sqrt{\mathrm{x}}\right)}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}^{\mathrm{x}} }\:+\sqrt{\mathrm{x}}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by EDWIN88 last updated on 15/May/21

         Danke nochmal

$$ \\ $$ Danke nochmal

Commented by Opredador last updated on 15/May/21

 Gracias

$$\:\mathrm{Gracias} \\ $$

Answered by mathmax by abdo last updated on 16/May/21

f(x)=((x^(x/2) −x^(1/2) )/(x^x −x)) changement x−1=t give  f(x)=f(1+t) =(((1+t)^((1+t)/2) −(1+t)^(1/2) )/((1+t)^(1+t) −(1+t)))  (t→0) we have  (1+t)^((1+t)/2) ∼1+(((1+t))/2)t  and (1+t)^(1/2)  ∼1+(t/2) ⇒  D ∼1+(t/2) +(t^2 /2)−1−(t/2)=(t^2 /2)  (1+t)^(1+t)  ∼1+(1+t)t ⇒N ∼1+(1+t)t−1−t =t^2  ⇒  f(1+t)∼(t^2 /(2t^2 )) →(1/2) ⇒lim_(x→1) f(x)=(1/2)

$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\frac{\mathrm{x}}{\mathrm{2}}} −\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{x}^{\mathrm{x}} −\mathrm{x}}\:\mathrm{changement}\:\mathrm{x}−\mathrm{1}=\mathrm{t}\:\mathrm{give} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{1}+\mathrm{t}\right)\:=\frac{\left(\mathrm{1}+\mathrm{t}\right)^{\frac{\mathrm{1}+\mathrm{t}}{\mathrm{2}}} −\left(\mathrm{1}+\mathrm{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{\left(\mathrm{1}+\mathrm{t}\right)^{\mathrm{1}+\mathrm{t}} −\left(\mathrm{1}+\mathrm{t}\right)}\:\:\left(\mathrm{t}\rightarrow\mathrm{0}\right)\:\mathrm{we}\:\mathrm{have} \\ $$$$\left(\mathrm{1}+\mathrm{t}\right)^{\frac{\mathrm{1}+\mathrm{t}}{\mathrm{2}}} \sim\mathrm{1}+\frac{\left(\mathrm{1}+\mathrm{t}\right)}{\mathrm{2}}\mathrm{t}\:\:\mathrm{and}\:\left(\mathrm{1}+\mathrm{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\sim\mathrm{1}+\frac{\mathrm{t}}{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{D}\:\sim\mathrm{1}+\frac{\mathrm{t}}{\mathrm{2}}\:+\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{1}−\frac{\mathrm{t}}{\mathrm{2}}=\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left(\mathrm{1}+\mathrm{t}\right)^{\mathrm{1}+\mathrm{t}} \:\sim\mathrm{1}+\left(\mathrm{1}+\mathrm{t}\right)\mathrm{t}\:\Rightarrow\mathrm{N}\:\sim\mathrm{1}+\left(\mathrm{1}+\mathrm{t}\right)\mathrm{t}−\mathrm{1}−\mathrm{t}\:=\mathrm{t}^{\mathrm{2}} \:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{1}+\mathrm{t}\right)\sim\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2t}^{\mathrm{2}} }\:\rightarrow\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}} \mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com