Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 141163 by Niiicooooo last updated on 16/May/21

Answered by mindispower last updated on 16/May/21

ζ(n)=1+Σ_(k≥2) (1/k^n )  k^n ≥nk^2  easy to see that ,k≥2  for n>>2  ⇔k^(n−2) ≥n..(E)  by induction n=4,k^2 ≥4,2^2 ≥4 true  suppose ∀n≥4 ..(E) true   k^(n−1) =k(k^(n−2) )≥k.n≥2n≥n+1,  so ∀k≥2,n≥4   k^n ≥nk^2 ⇒  1≤ζ(n)=1+Σ_(k≥2) (1/k^n )≤1+Σ_(k≥2) (1/(nk^2 ))=1+(1/n)(ζ(2)−1)  ⇒1≤lim_(n→∞) ζ(n)≤lim_(n→∞) (1+(1/n)(ζ(2)−1))  ⇔lim_(n→∞) ζ(n)=1

$$\zeta\left({n}\right)=\mathrm{1}+\underset{{k}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{k}^{{n}} } \\ $$$${k}^{{n}} \geqslant{nk}^{\mathrm{2}} \:{easy}\:{to}\:{see}\:{that}\:,{k}\geqslant\mathrm{2} \\ $$$${for}\:{n}>>\mathrm{2} \\ $$$$\Leftrightarrow{k}^{{n}−\mathrm{2}} \geqslant{n}..\left({E}\right) \\ $$$${by}\:{induction}\:{n}=\mathrm{4},{k}^{\mathrm{2}} \geqslant\mathrm{4},\mathrm{2}^{\mathrm{2}} \geqslant\mathrm{4}\:{true} \\ $$$${suppose}\:\forall{n}\geqslant\mathrm{4}\:..\left({E}\right)\:{true}\: \\ $$$${k}^{{n}−\mathrm{1}} ={k}\left({k}^{{n}−\mathrm{2}} \right)\geqslant{k}.{n}\geqslant\mathrm{2}{n}\geqslant{n}+\mathrm{1}, \\ $$$${so}\:\forall{k}\geqslant\mathrm{2},{n}\geqslant\mathrm{4}\:\:\:{k}^{{n}} \geqslant{nk}^{\mathrm{2}} \Rightarrow \\ $$$$\mathrm{1}\leqslant\zeta\left({n}\right)=\mathrm{1}+\underset{{k}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{k}^{{n}} }\leqslant\mathrm{1}+\underset{{k}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{nk}^{\mathrm{2}} }=\mathrm{1}+\frac{\mathrm{1}}{{n}}\left(\zeta\left(\mathrm{2}\right)−\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{1}\leqslant\underset{{n}\rightarrow\infty} {\mathrm{lim}}\zeta\left({n}\right)\leqslant\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\left(\zeta\left(\mathrm{2}\right)−\mathrm{1}\right)\right) \\ $$$$\Leftrightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\zeta\left({n}\right)=\mathrm{1} \\ $$$$ \\ $$

Commented by Niiicooooo last updated on 17/May/21

greatful

$${greatful} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com