Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 141171 by iloveisrael last updated on 16/May/21

Commented by iloveisrael last updated on 16/May/21

 insteresting question

$$\:{insteresting}\:{question} \\ $$

Commented by mr W last updated on 16/May/21

if AC is fixed, then s is also fixed.  there is no maximum value of s,  because it has a fixed value.

$${if}\:{AC}\:{is}\:{fixed},\:{then}\:{s}\:{is}\:{also}\:{fixed}. \\ $$$${there}\:{is}\:{no}\:{maximum}\:{value}\:{of}\:{s}, \\ $$$${because}\:{it}\:{has}\:{a}\:{fixed}\:{value}. \\ $$

Commented by iloveisrael last updated on 16/May/21

no

$${no} \\ $$

Commented by mr W last updated on 16/May/21

if  R and 1 are fixed values,  then s is also fixed. or you mean R  is not constant.

$${if}\:\:{R}\:{and}\:\mathrm{1}\:{are}\:{fixed}\:{values}, \\ $$$${then}\:{s}\:{is}\:{also}\:{fixed}.\:{or}\:{you}\:{mean}\:{R} \\ $$$${is}\:{not}\:{constant}. \\ $$

Commented by EDWIN88 last updated on 16/May/21

s depent to r . not a constant

$$\mathrm{s}\:\mathrm{depent}\:\mathrm{to}\:\mathrm{r}\:.\:\mathrm{not}\:\mathrm{a}\:\mathrm{constant} \\ $$

Commented by mr W last updated on 16/May/21

but if r is constant, then s is also  constant. the question seems to show  that r is given, i.e. r is constant.

$${but}\:{if}\:{r}\:{is}\:{constant},\:{then}\:{s}\:{is}\:{also} \\ $$$${constant}.\:{the}\:{question}\:{seems}\:{to}\:{show} \\ $$$${that}\:{r}\:{is}\:{given},\:{i}.{e}.\:{r}\:{is}\:{constant}. \\ $$

Answered by EDWIN88 last updated on 16/May/21

let  { ((A(0,0) )),((B(r,0))) :}C(0,1)  eq of BC⇒ y=−(x/r)+1  eq of cifcle⇒(x−r)^2 +y^2  = r^2                              y=(√(2rx−x^2 ))  coordinates  { ((T(s, −(r/s)+1))),((Q(s,(√(2rs−s^2 )) ))) :} . Since  PQTU is a square we have      s = −(s/r)+1−(√(2rs−s^2 ))     rs = −s+r−r(√(2rs−s^2 ))     r(√(2rs−s^2 )) = −s+r−rs     r^2 (2rs−s^2 ) = s^2 +r^2 +r^2 s^2 −2rs−2r^2 s+2rs^2      2r^3 s−r^2 s^2  = s^2 +r^2 +r^2 s^2 −2rs−2r^2 s+2rs^2     2r^3 s+2rs+2r^2 s−2r^2 s^2 −2rs^2 −s^2 −r^2 =0    (−2r^2 −2r−1)s^2 +(2r^3 +2r^2 +2r)s−r^2  =0   (2r^2 +2r+1)s^2  −2r(r^2 +r+1)s +r^2  = 0    s = (r/(2r^2 +2r+1))   (ds/dr) = ((1(2r^2 +2r+1)−r(4r+2))/((2r^2 +2r+1)^2 )) = 0  ⇒ 2r^2 +2r+1−4r^2 −2r = 0  ⇒ 2r^2  = 1 →r = (1/( (√2)))   max s = ((1/( (√2)))/(1+(√2)+1)) = (1/((2+(√2))(√2)))   s_(max)  = (1/(2(√2) +2)) × ((2(√2)−2)/(2(√2)−2)) = ((2(√2)−2)/4)   s_(max)  = (((√2)−1)/2) ⋇

$$\mathrm{let}\:\begin{cases}{\mathrm{A}\left(\mathrm{0},\mathrm{0}\right)\:}\\{\mathrm{B}\left(\mathrm{r},\mathrm{0}\right)}\end{cases}\mathrm{C}\left(\mathrm{0},\mathrm{1}\right) \\ $$$$\mathrm{eq}\:\mathrm{of}\:\mathrm{BC}\Rightarrow\:\mathrm{y}=−\frac{\mathrm{x}}{\mathrm{r}}+\mathrm{1} \\ $$$$\mathrm{eq}\:\mathrm{of}\:\mathrm{cifcle}\Rightarrow\left(\mathrm{x}−\mathrm{r}\right)^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{r}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}=\sqrt{\mathrm{2rx}−\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{coordinates}\:\begin{cases}{\mathrm{T}\left(\mathrm{s},\:−\frac{\mathrm{r}}{\mathrm{s}}+\mathrm{1}\right)}\\{\mathrm{Q}\left(\mathrm{s},\sqrt{\mathrm{2rs}−\mathrm{s}^{\mathrm{2}} }\:\right)}\end{cases}\:.\:\mathrm{Since} \\ $$$$\mathrm{PQTU}\:\mathrm{is}\:\mathrm{a}\:\mathrm{square}\:\mathrm{we}\:\mathrm{have}\: \\ $$$$\:\:\:\mathrm{s}\:=\:−\frac{\mathrm{s}}{\mathrm{r}}+\mathrm{1}−\sqrt{\mathrm{2rs}−\mathrm{s}^{\mathrm{2}} } \\ $$$$\:\:\:\mathrm{rs}\:=\:−\mathrm{s}+\mathrm{r}−\mathrm{r}\sqrt{\mathrm{2rs}−\mathrm{s}^{\mathrm{2}} } \\ $$$$\:\:\:\mathrm{r}\sqrt{\mathrm{2rs}−\mathrm{s}^{\mathrm{2}} }\:=\:−\mathrm{s}+\mathrm{r}−\mathrm{rs} \\ $$$$\:\:\:\mathrm{r}^{\mathrm{2}} \left(\mathrm{2rs}−\mathrm{s}^{\mathrm{2}} \right)\:=\:\mathrm{s}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} \mathrm{s}^{\mathrm{2}} −\mathrm{2rs}−\mathrm{2r}^{\mathrm{2}} \mathrm{s}+\mathrm{2rs}^{\mathrm{2}} \\ $$$$\:\:\:\mathrm{2r}^{\mathrm{3}} \mathrm{s}−\mathrm{r}^{\mathrm{2}} \mathrm{s}^{\mathrm{2}} \:=\:\mathrm{s}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} \mathrm{s}^{\mathrm{2}} −\mathrm{2rs}−\mathrm{2r}^{\mathrm{2}} \mathrm{s}+\mathrm{2rs}^{\mathrm{2}} \\ $$$$\:\:\mathrm{2r}^{\mathrm{3}} \mathrm{s}+\mathrm{2rs}+\mathrm{2r}^{\mathrm{2}} \mathrm{s}−\mathrm{2r}^{\mathrm{2}} \mathrm{s}^{\mathrm{2}} −\mathrm{2rs}^{\mathrm{2}} −\mathrm{s}^{\mathrm{2}} −\mathrm{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\left(−\mathrm{2r}^{\mathrm{2}} −\mathrm{2r}−\mathrm{1}\right)\mathrm{s}^{\mathrm{2}} +\left(\mathrm{2r}^{\mathrm{3}} +\mathrm{2r}^{\mathrm{2}} +\mathrm{2r}\right)\mathrm{s}−\mathrm{r}^{\mathrm{2}} \:=\mathrm{0} \\ $$$$\:\left(\mathrm{2r}^{\mathrm{2}} +\mathrm{2r}+\mathrm{1}\right)\mathrm{s}^{\mathrm{2}} \:−\mathrm{2r}\left(\mathrm{r}^{\mathrm{2}} +\mathrm{r}+\mathrm{1}\right)\mathrm{s}\:+\mathrm{r}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\:\:\mathrm{s}\:=\:\frac{\mathrm{r}}{\mathrm{2r}^{\mathrm{2}} +\mathrm{2r}+\mathrm{1}} \\ $$$$\:\frac{\mathrm{ds}}{\mathrm{dr}}\:=\:\frac{\mathrm{1}\left(\mathrm{2r}^{\mathrm{2}} +\mathrm{2r}+\mathrm{1}\right)−\mathrm{r}\left(\mathrm{4r}+\mathrm{2}\right)}{\left(\mathrm{2r}^{\mathrm{2}} +\mathrm{2r}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{2r}^{\mathrm{2}} +\mathrm{2r}+\mathrm{1}−\mathrm{4r}^{\mathrm{2}} −\mathrm{2r}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{2r}^{\mathrm{2}} \:=\:\mathrm{1}\:\rightarrow\mathrm{r}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\:\mathrm{max}\:\mathrm{s}\:=\:\frac{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}{\mathrm{1}+\sqrt{\mathrm{2}}+\mathrm{1}}\:=\:\frac{\mathrm{1}}{\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)\sqrt{\mathrm{2}}} \\ $$$$\:\mathrm{s}_{\mathrm{max}} \:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}\:+\mathrm{2}}\:×\:\frac{\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}}{\mathrm{4}} \\ $$$$\:\mathrm{s}_{\mathrm{max}} \:=\:\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}}\:\divideontimes\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com