Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 141193 by Eric002 last updated on 16/May/21

A= [((2  ),1,(−1)),((−3),(−1),2),((−2),1,2) ]find the inverse of  this matrix

$${A}=\begin{bmatrix}{\mathrm{2}\:\:}&{\mathrm{1}}&{−\mathrm{1}}\\{−\mathrm{3}}&{−\mathrm{1}}&{\mathrm{2}}\\{−\mathrm{2}}&{\mathrm{1}}&{\mathrm{2}}\end{bmatrix}{find}\:{the}\:{inverse}\:{of}\:\:{this}\:{matrix} \\ $$$$ \\ $$

Answered by bramlexs22 last updated on 16/May/21

 Cayley−Hamilton theorem   ∣A−λI∣ = 0  ⇒λ^3 −(tr A)λ^2 + (((minor of the terms)),((on the leading diagonal of A)) ) λ−det(A)=0  ⇒λ^3 −3λ^2 −λ−1=0  ⇒p(A)= 0  ⇒ [A^3 −3A^2 −A−I= 0 ]×A^(−1)   ⇒A^2 −3A−I−A^(−1)  = 0  ⇒A^(−1)  = A^2 −3A−I

$$\:{Cayley}−{Hamilton}\:{theorem} \\ $$$$\:\mid{A}−\lambda{I}\mid\:=\:\mathrm{0} \\ $$$$\Rightarrow\lambda^{\mathrm{3}} −\left({tr}\:{A}\right)\lambda^{\mathrm{2}} +\begin{pmatrix}{{minor}\:{of}\:{the}\:{terms}}\\{{on}\:{the}\:{leading}\:{diagonal}\:{of}\:{A}}\end{pmatrix}\:\lambda−{det}\left({A}\right)=\mathrm{0} \\ $$$$\Rightarrow\lambda^{\mathrm{3}} −\mathrm{3}\lambda^{\mathrm{2}} −\lambda−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{p}\left({A}\right)=\:\mathrm{0} \\ $$$$\Rightarrow\:\left[{A}^{\mathrm{3}} −\mathrm{3}{A}^{\mathrm{2}} −{A}−{I}=\:\mathrm{0}\:\right]×{A}^{−\mathrm{1}} \\ $$$$\Rightarrow{A}^{\mathrm{2}} −\mathrm{3}{A}−{I}−{A}^{−\mathrm{1}} \:=\:\mathrm{0} \\ $$$$\Rightarrow{A}^{−\mathrm{1}} \:=\:{A}^{\mathrm{2}} −\mathrm{3}{A}−{I}\: \\ $$$$ \\ $$

Commented by Eric002 last updated on 16/May/21

well done sir

$${well}\:{done}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com