Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 141249 by bramlexs22 last updated on 17/May/21

Commented by Rozix last updated on 17/May/21

kindly drop me your whatsapp numbers if interested in having a maths group

$${kindly}\:{drop}\:{me}\:{your}\:{whatsapp}\:{numbers}\:{if}\:{interested}\:{in}\:{having}\:{a}\:{maths}\:{group} \\ $$

Answered by MJS_new last updated on 17/May/21

−∫_0 ^(π/2) ((1−cos 2x)/(3+cos 4x))dx=       [t=tan x → dx=cos^2  x dt]  =−(1/2)∫_0 ^∞ (t^2 /(t^4 +1))dt=  =[((√2)/(16))ln ((t^2 +(√2)t+1)/(t^2 −(√2)t+1)) −((√2)/8)(arctan ((√2)t−1) +arctan ((√2)t+1))]_0 ^∞ =  =−(((√2)π)/8)

$$−\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{3}+\mathrm{cos}\:\mathrm{4}{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\mathrm{cos}^{\mathrm{2}} \:{x}\:{dt}\right] \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{4}} +\mathrm{1}}{dt}= \\ $$$$=\left[\frac{\sqrt{\mathrm{2}}}{\mathrm{16}}\mathrm{ln}\:\frac{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}+\mathrm{1}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}+\mathrm{1}}\:−\frac{\sqrt{\mathrm{2}}}{\mathrm{8}}\left(\mathrm{arctan}\:\left(\sqrt{\mathrm{2}}{t}−\mathrm{1}\right)\:+\mathrm{arctan}\:\left(\sqrt{\mathrm{2}}{t}+\mathrm{1}\right)\right)\right]_{\mathrm{0}} ^{\infty} = \\ $$$$=−\frac{\sqrt{\mathrm{2}}\pi}{\mathrm{8}} \\ $$

Commented by MJS_new last updated on 17/May/21

−(((√2)π)/8)=−(((√2)π(√2))/(8(√2)))=−((2π)/(8(√2)))=−(π/(4(√2)))

$$−\frac{\sqrt{\mathrm{2}}\pi}{\mathrm{8}}=−\frac{\sqrt{\mathrm{2}}\pi\sqrt{\mathrm{2}}}{\mathrm{8}\sqrt{\mathrm{2}}}=−\frac{\mathrm{2}\pi}{\mathrm{8}\sqrt{\mathrm{2}}}=−\frac{\pi}{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$

Answered by bemath last updated on 17/May/21

I=∫_0 ^(π/2)  ((cos 2x−1)/(2cos^2 2x+2)) dx   2I=∫_0 ^(π/2) ((cos 2x−1)/(cos^2 2x+1))  let u=(π/2)−x   2I=∫_0 ^(π/2)  ((−cos 2x−1)/(cos^2 2x+1)) dx  4I= ∫_0 ^(π/2) ((−2)/(cos^2 2x+1)) dx  −2I=∫_0 ^(π/2)  ((sec^2 2x)/(sec^2 2x+1)) dx  −2I=∫_0 ^(π/2)  ((sec^2 2x)/(tan^2 2x +((√2))^2 )) dx  −2I=(1/( 2)) ∫_0 ^∞  (dx/(x^2 +((√2))^2 ))  −2I=(1/( 2)). (1/( (√2))) [ arctan ((x/( (√2))))]_0 ^∞   I=−(1/(4(√2))).(π/2) = −((π(√2))/8)

$${I}=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{cos}\:\mathrm{2}{x}−\mathrm{1}}{\mathrm{2cos}\:^{\mathrm{2}} \mathrm{2}{x}+\mathrm{2}}\:{dx}\: \\ $$$$\mathrm{2}{I}=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{cos}\:\mathrm{2}{x}−\mathrm{1}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{2}{x}+\mathrm{1}} \\ $$$${let}\:{u}=\frac{\pi}{\mathrm{2}}−{x}\: \\ $$$$\mathrm{2}{I}=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{−\mathrm{cos}\:\mathrm{2}{x}−\mathrm{1}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{2}{x}+\mathrm{1}}\:{dx} \\ $$$$\mathrm{4}{I}=\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{−\mathrm{2}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{2}{x}+\mathrm{1}}\:{dx} \\ $$$$−\mathrm{2}{I}=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{sec}\:^{\mathrm{2}} \mathrm{2}{x}}{\mathrm{sec}\:^{\mathrm{2}} \mathrm{2}{x}+\mathrm{1}}\:{dx} \\ $$$$−\mathrm{2}{I}=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{sec}\:^{\mathrm{2}} \mathrm{2}{x}}{\mathrm{tan}\:^{\mathrm{2}} \mathrm{2}{x}\:+\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }\:{dx} \\ $$$$−\mathrm{2}{I}=\frac{\mathrm{1}}{\:\mathrm{2}}\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{dx}}{{x}^{\mathrm{2}} +\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$−\mathrm{2}{I}=\frac{\mathrm{1}}{\:\mathrm{2}}.\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\left[\:\mathrm{arctan}\:\left(\frac{{x}}{\:\sqrt{\mathrm{2}}}\right)\right]_{\mathrm{0}} ^{\infty} \\ $$$${I}=−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}.\frac{\pi}{\mathrm{2}}\:=\:−\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com