Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 141269 by ajfour last updated on 17/May/21

θ+φ+ψ=π  (angles of a △)  find maximum of   (φ−θ)^2 +(ψ−φ)^2 +(ψ−θ)^2  .

$$\theta+\phi+\psi=\pi\:\:\left({angles}\:{of}\:{a}\:\bigtriangleup\right) \\ $$$${find}\:{maximum}\:{of} \\ $$$$\:\left(\phi−\theta\right)^{\mathrm{2}} +\left(\psi−\phi\right)^{\mathrm{2}} +\left(\psi−\theta\right)^{\mathrm{2}} \:. \\ $$

Commented by MJS_new last updated on 17/May/21

maximum 2π^2  when two angles are zero and  the third one is π

$$\mathrm{maximum}\:\mathrm{2}\pi^{\mathrm{2}} \:\mathrm{when}\:\mathrm{two}\:\mathrm{angles}\:\mathrm{are}\:\mathrm{zero}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{third}\:\mathrm{one}\:\mathrm{is}\:\pi \\ $$

Commented by ajfour last updated on 17/May/21

thanks sir, any analytical  method..?

$${thanks}\:{sir},\:{any}\:{analytical} \\ $$$${method}..? \\ $$

Commented by MJS_new last updated on 17/May/21

sorry for using a, b, c instead of your variable  names, I′m in a hurry  (1)  c=π−a−b  ⇒  6a^2 +6ab+6b^2 −6πa−6πb+2π^2  → max  (d/db)[...]=6a+12b−6π=0 ⇒ b=((π−a)/2)  but this leads to a=b=c=(π/3) and a minimum  ⇒  we have to search along the borders  0≤a, b≤π  b=0  6a^2 −6πa+2π^2  → max  again only a minimum ⇒  a=0∨a=π ⇒ max = 2π^2

$$\mathrm{sorry}\:\mathrm{for}\:\mathrm{using}\:{a},\:{b},\:{c}\:\mathrm{instead}\:\mathrm{of}\:\mathrm{your}\:\mathrm{variable} \\ $$$$\mathrm{names},\:\mathrm{I}'\mathrm{m}\:\mathrm{in}\:\mathrm{a}\:\mathrm{hurry} \\ $$$$\left(\mathrm{1}\right) \\ $$$${c}=\pi−{a}−{b} \\ $$$$\Rightarrow \\ $$$$\mathrm{6}{a}^{\mathrm{2}} +\mathrm{6}{ab}+\mathrm{6}{b}^{\mathrm{2}} −\mathrm{6}\pi{a}−\mathrm{6}\pi{b}+\mathrm{2}\pi^{\mathrm{2}} \:\rightarrow\:\mathrm{max} \\ $$$$\frac{{d}}{{db}}\left[...\right]=\mathrm{6}{a}+\mathrm{12}{b}−\mathrm{6}\pi=\mathrm{0}\:\Rightarrow\:{b}=\frac{\pi−{a}}{\mathrm{2}} \\ $$$$\mathrm{but}\:\mathrm{this}\:\mathrm{leads}\:\mathrm{to}\:{a}={b}={c}=\frac{\pi}{\mathrm{3}}\:\mathrm{and}\:\mathrm{a}\:\mathrm{minimum} \\ $$$$\Rightarrow \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{search}\:\mathrm{along}\:\mathrm{the}\:\mathrm{borders} \\ $$$$\mathrm{0}\leqslant{a},\:{b}\leqslant\pi \\ $$$${b}=\mathrm{0} \\ $$$$\mathrm{6}{a}^{\mathrm{2}} −\mathrm{6}\pi{a}+\mathrm{2}\pi^{\mathrm{2}} \:\rightarrow\:\mathrm{max} \\ $$$$\mathrm{again}\:\mathrm{only}\:\mathrm{a}\:\mathrm{minimum}\:\Rightarrow \\ $$$${a}=\mathrm{0}\vee{a}=\pi\:\Rightarrow\:\mathrm{max}\:=\:\mathrm{2}\pi^{\mathrm{2}} \\ $$

Answered by TheSupreme last updated on 17/May/21

Γ(∅,θ)=f(∅,θ,π−∅−θ)=(∅−θ)^2 +(π−2∅−θ)^2 +(π−∅−2θ)^2   grad Γ= { ((2(∅−θ)−4(π−2∅−θ)−2(π−∅−2θ)=0)),((−2(∅−θ)−2(π−2∅−θ)−4(π−∅−2θ)=0)) :}   { ((2∅+θ=π)),((∅+2θ=π)) :}  (∅,θ)=((π/3),(π/3))  Γ((π/3),(π/3))=0 (absolute min)    set ∅=kθ  Λ(θ,k)=f(kθ,θ,π−kθ−θ)=θ^2 (k−1)^2 +(π−2kθ−θ)^2 +(π−kθ−2θ)^2   θ^2 [(k−1)^2 +(2k+1)^2 +(k+2)^2 ]−2θπ[(2k+1)+(k+2)]+2π^2   as you can see f is not limited  f has no max

$$\Gamma\left(\emptyset,\theta\right)={f}\left(\emptyset,\theta,\pi−\emptyset−\theta\right)=\left(\emptyset−\theta\right)^{\mathrm{2}} +\left(\pi−\mathrm{2}\emptyset−\theta\right)^{\mathrm{2}} +\left(\pi−\emptyset−\mathrm{2}\theta\right)^{\mathrm{2}} \\ $$$${grad}\:\Gamma=\begin{cases}{\mathrm{2}\left(\emptyset−\theta\right)−\mathrm{4}\left(\pi−\mathrm{2}\emptyset−\theta\right)−\mathrm{2}\left(\pi−\emptyset−\mathrm{2}\theta\right)=\mathrm{0}}\\{−\mathrm{2}\left(\emptyset−\theta\right)−\mathrm{2}\left(\pi−\mathrm{2}\emptyset−\theta\right)−\mathrm{4}\left(\pi−\emptyset−\mathrm{2}\theta\right)=\mathrm{0}}\end{cases} \\ $$$$\begin{cases}{\mathrm{2}\emptyset+\theta=\pi}\\{\emptyset+\mathrm{2}\theta=\pi}\end{cases} \\ $$$$\left(\emptyset,\theta\right)=\left(\frac{\pi}{\mathrm{3}},\frac{\pi}{\mathrm{3}}\right) \\ $$$$\Gamma\left(\frac{\pi}{\mathrm{3}},\frac{\pi}{\mathrm{3}}\right)=\mathrm{0}\:\left({absolute}\:{min}\right) \\ $$$$ \\ $$$${set}\:\emptyset={k}\theta \\ $$$$\Lambda\left(\theta,{k}\right)={f}\left({k}\theta,\theta,\pi−{k}\theta−\theta\right)=\theta^{\mathrm{2}} \left({k}−\mathrm{1}\right)^{\mathrm{2}} +\left(\pi−\mathrm{2}{k}\theta−\theta\right)^{\mathrm{2}} +\left(\pi−{k}\theta−\mathrm{2}\theta\right)^{\mathrm{2}} \\ $$$$\theta^{\mathrm{2}} \left[\left({k}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} +\left({k}+\mathrm{2}\right)^{\mathrm{2}} \right]−\mathrm{2}\theta\pi\left[\left(\mathrm{2}{k}+\mathrm{1}\right)+\left({k}+\mathrm{2}\right)\right]+\mathrm{2}\pi^{\mathrm{2}} \\ $$$${as}\:{you}\:{can}\:{see}\:{f}\:{is}\:{not}\:{limited} \\ $$$${f}\:{has}\:{no}\:{max} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com