Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 141289 by ajfour last updated on 17/May/21

Commented by ajfour last updated on 17/May/21

  x^3 −x−c=0 . To find excess!

$$\:\:{x}^{\mathrm{3}} −{x}−{c}=\mathrm{0}\:.\:{To}\:{find}\:{excess}! \\ $$

Answered by ajfour last updated on 18/May/21

  y=x^3 −x  R^2 =x^2 +y^2    (R^2 −c^2 )(R^2 −c^2 −1)^2 =c^2   (R^2 )^3 −(3c^2 +2)(R^2 )^2     +{(c^2 +1)^2 +2c^2 (c^2 +1)}R^2     −c^2 (c^2 +1)^2 −c^2 =0  let roots of x^3 −x=c  be α, −β, −γ  and corresponding  radii  p, q, r.    p^2 =α^2 +c^2     q^2 =β^2 +c^2     r^2 =γ^2 +c^2   2prcos (θ+δ)+(α−γ)^2 +4c^2     = p^2 +r^2   pcos θ=α,  rcos δ=γ  psin θ=c, rsin δ=c  ⇒ 2pr(((αγ−c^2 )/(pr)))+(α−γ)^2      =p^2 +r^2 −4c^2   ⇒ 2(αγ−c^2 )+(α−γ)^2         = p^2 +r^2 −4c^2   p^2 +q^2 +r^2 =3c^2 +2  p^2 r^2 +q^2 (p^2 +r^2 )=(c^2 +1)(3c^2 +1)  p^2 q^2 r^2 = c^2 (c^2 +1)^2 +c^2   And  αγ+1=(α+γ)^2   (α−γ)^2 =1−3γα    αγ(α+γ)=c    ⇒  αγ+(αγ)^2 =c(α+γ)  ⇒  p^2 +r^2 =2c^2 +1−αγ     α^2 +γ^2 +αγ=1  ...

$$\:\:{y}={x}^{\mathrm{3}} −{x} \\ $$$${R}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\:\left({R}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)\left({R}^{\mathrm{2}} −{c}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} ={c}^{\mathrm{2}} \\ $$$$\left({R}^{\mathrm{2}} \right)^{\mathrm{3}} −\left(\mathrm{3}{c}^{\mathrm{2}} +\mathrm{2}\right)\left({R}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\:\:+\left\{\left({c}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}{c}^{\mathrm{2}} \left({c}^{\mathrm{2}} +\mathrm{1}\right)\right\}{R}^{\mathrm{2}} \\ $$$$\:\:−{c}^{\mathrm{2}} \left({c}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −{c}^{\mathrm{2}} =\mathrm{0} \\ $$$${let}\:{roots}\:{of}\:{x}^{\mathrm{3}} −{x}={c} \\ $$$${be}\:\alpha,\:−\beta,\:−\gamma\:\:{and}\:{corresponding} \\ $$$${radii}\:\:{p},\:{q},\:{r}. \\ $$$$\:\:{p}^{\mathrm{2}} =\alpha^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$$$\:\:{q}^{\mathrm{2}} =\beta^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$$$\:\:{r}^{\mathrm{2}} =\gamma^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$$$\mathrm{2}{pr}\mathrm{cos}\:\left(\theta+\delta\right)+\left(\alpha−\gamma\right)^{\mathrm{2}} +\mathrm{4}{c}^{\mathrm{2}} \\ $$$$\:\:=\:{p}^{\mathrm{2}} +{r}^{\mathrm{2}} \\ $$$${p}\mathrm{cos}\:\theta=\alpha,\:\:{r}\mathrm{cos}\:\delta=\gamma \\ $$$${p}\mathrm{sin}\:\theta={c},\:{r}\mathrm{sin}\:\delta={c} \\ $$$$\Rightarrow\:\mathrm{2}{pr}\left(\frac{\alpha\gamma−{c}^{\mathrm{2}} }{{pr}}\right)+\left(\alpha−\gamma\right)^{\mathrm{2}} \\ $$$$\:\:\:={p}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{4}{c}^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{2}\left(\alpha\gamma−{c}^{\mathrm{2}} \right)+\left(\alpha−\gamma\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\:{p}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{4}{c}^{\mathrm{2}} \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} =\mathrm{3}{c}^{\mathrm{2}} +\mathrm{2} \\ $$$${p}^{\mathrm{2}} {r}^{\mathrm{2}} +{q}^{\mathrm{2}} \left({p}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)=\left({c}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{3}{c}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$${p}^{\mathrm{2}} {q}^{\mathrm{2}} {r}^{\mathrm{2}} =\:{c}^{\mathrm{2}} \left({c}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$$${And}\:\:\alpha\gamma+\mathrm{1}=\left(\alpha+\gamma\right)^{\mathrm{2}} \\ $$$$\left(\alpha−\gamma\right)^{\mathrm{2}} =\mathrm{1}−\mathrm{3}\gamma\alpha \\ $$$$\:\:\alpha\gamma\left(\alpha+\gamma\right)={c} \\ $$$$\:\:\Rightarrow\:\:\alpha\gamma+\left(\alpha\gamma\right)^{\mathrm{2}} ={c}\left(\alpha+\gamma\right) \\ $$$$\Rightarrow\:\:{p}^{\mathrm{2}} +{r}^{\mathrm{2}} =\mathrm{2}{c}^{\mathrm{2}} +\mathrm{1}−\alpha\gamma \\ $$$$\:\:\:\alpha^{\mathrm{2}} +\gamma^{\mathrm{2}} +\alpha\gamma=\mathrm{1} \\ $$$$... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com