Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 141294 by bemath last updated on 17/May/21

Find max & min value of   f(x)=(x/(x^2 −5x+9)).

$${Find}\:{max}\:\&\:{min}\:{value}\:{of} \\ $$ $$\:{f}\left({x}\right)=\frac{{x}}{{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{9}}. \\ $$

Answered by MJS_new last updated on 17/May/21

(df/dx)=((−x^2 +9)/((x^2 −5x+9)^2 ))=0 ⇒ x=±3  min at x=−3  max at x=3

$$\frac{{df}}{{dx}}=\frac{−{x}^{\mathrm{2}} +\mathrm{9}}{\left({x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{9}\right)^{\mathrm{2}} }=\mathrm{0}\:\Rightarrow\:{x}=\pm\mathrm{3} \\ $$ $$\mathrm{min}\:\mathrm{at}\:{x}=−\mathrm{3} \\ $$ $$\mathrm{max}\:\mathrm{at}\:{x}=\mathrm{3} \\ $$

Answered by EDWIN88 last updated on 17/May/21

 Domain f(x): ∀xR  ((df(x))/dx) = ((x^2 −5x+9−x(2x−5))/((x^2 −5x+9)^2 )) = 0   ((df(x))/dx) = ((−x^2 +9)/((x^2 −5x+9)^2 ))  ⇒−x^2 +9 = 0 , x=± 3  by first−derivative tes we get   decreasing in x<−3 ∨ x>3  increasing in −3<x<3  thus  { ((min at x=−3)),((max at x=3)) :}⇒ { ((f_(min)  = −(3/(33))=−(1/(11)))),((f_(max)  = (3/3)=1)) :}

$$\:\mathrm{Domain}\:\mathrm{f}\left(\mathrm{x}\right):\:\forall\mathrm{x}\mathbb{R} \\ $$ $$\frac{\mathrm{df}\left(\mathrm{x}\right)}{\mathrm{dx}}\:=\:\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{5x}+\mathrm{9}−\mathrm{x}\left(\mathrm{2x}−\mathrm{5}\right)}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{5x}+\mathrm{9}\right)^{\mathrm{2}} }\:=\:\mathrm{0} \\ $$ $$\:\frac{\mathrm{df}\left(\mathrm{x}\right)}{\mathrm{dx}}\:=\:\frac{−\mathrm{x}^{\mathrm{2}} +\mathrm{9}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{5x}+\mathrm{9}\right)^{\mathrm{2}} } \\ $$ $$\Rightarrow−\mathrm{x}^{\mathrm{2}} +\mathrm{9}\:=\:\mathrm{0}\:,\:\mathrm{x}=\pm\:\mathrm{3} \\ $$ $$\mathrm{by}\:\mathrm{first}−\mathrm{derivative}\:\mathrm{tes}\:\mathrm{we}\:\mathrm{get}\: \\ $$ $$\mathrm{decreasing}\:\mathrm{in}\:\mathrm{x}<−\mathrm{3}\:\vee\:\mathrm{x}>\mathrm{3} \\ $$ $$\mathrm{increasing}\:\mathrm{in}\:−\mathrm{3}<\mathrm{x}<\mathrm{3} \\ $$ $$\mathrm{thus}\:\begin{cases}{\mathrm{min}\:\mathrm{at}\:\mathrm{x}=−\mathrm{3}}\\{\mathrm{max}\:\mathrm{at}\:\mathrm{x}=\mathrm{3}}\end{cases}\Rightarrow\begin{cases}{\mathrm{f}_{\mathrm{min}} \:=\:−\frac{\mathrm{3}}{\mathrm{33}}=−\frac{\mathrm{1}}{\mathrm{11}}}\\{\mathrm{f}_{\mathrm{max}} \:=\:\frac{\mathrm{3}}{\mathrm{3}}=\mathrm{1}}\end{cases} \\ $$

Answered by bemath last updated on 17/May/21

 y = (x/(x^2 −5x+9))  ⇒yx^2 −5xy+9y−x =0  ⇒yx^2 −(5y+1)x+9y =0  Δ=(5y+1)^2 −4(y)(9y)≥0  ⇒25y^2 +10y+1−36y^2  ≥ 0  ⇒−11y^2 +10y+1 ≥ 0  ⇒11y^2 −10y−1≤0  ⇒(11y+1)(y−1)≤0  ⇒−(1/(11)) ≤ y ≤ 1   → { ((min =−(1/(11)))),((max = 1)) :}

$$\:{y}\:=\:\frac{{x}}{{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{9}} \\ $$ $$\Rightarrow{yx}^{\mathrm{2}} −\mathrm{5}{xy}+\mathrm{9}{y}−{x}\:=\mathrm{0} \\ $$ $$\Rightarrow{yx}^{\mathrm{2}} −\left(\mathrm{5}{y}+\mathrm{1}\right){x}+\mathrm{9}{y}\:=\mathrm{0} \\ $$ $$\Delta=\left(\mathrm{5}{y}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}\left({y}\right)\left(\mathrm{9}{y}\right)\geqslant\mathrm{0} \\ $$ $$\Rightarrow\mathrm{25}{y}^{\mathrm{2}} +\mathrm{10}{y}+\mathrm{1}−\mathrm{36}{y}^{\mathrm{2}} \:\geqslant\:\mathrm{0} \\ $$ $$\Rightarrow−\mathrm{11}{y}^{\mathrm{2}} +\mathrm{10}{y}+\mathrm{1}\:\geqslant\:\mathrm{0} \\ $$ $$\Rightarrow\mathrm{11}{y}^{\mathrm{2}} −\mathrm{10}{y}−\mathrm{1}\leqslant\mathrm{0} \\ $$ $$\Rightarrow\left(\mathrm{11}{y}+\mathrm{1}\right)\left({y}−\mathrm{1}\right)\leqslant\mathrm{0} \\ $$ $$\Rightarrow−\frac{\mathrm{1}}{\mathrm{11}}\:\leqslant\:{y}\:\leqslant\:\mathrm{1} \\ $$ $$\:\rightarrow\begin{cases}{{min}\:=−\frac{\mathrm{1}}{\mathrm{11}}}\\{{max}\:=\:\mathrm{1}}\end{cases} \\ $$

Answered by mr W last updated on 17/May/21

f(x)=(1/(x+(9/x)−5))  x+(9/x)≥2(√9)=6  ⇒f(x)_(max) =(1/(6−5))=1 when x=3  x+(9/x)≤−2(√9)=−6  ⇒f(x)_(min) =(1/(−6−5))=−(1/(11)) when x=−3

$${f}\left({x}\right)=\frac{\mathrm{1}}{{x}+\frac{\mathrm{9}}{{x}}−\mathrm{5}} \\ $$ $${x}+\frac{\mathrm{9}}{{x}}\geqslant\mathrm{2}\sqrt{\mathrm{9}}=\mathrm{6} \\ $$ $$\Rightarrow{f}\left({x}\right)_{{max}} =\frac{\mathrm{1}}{\mathrm{6}−\mathrm{5}}=\mathrm{1}\:{when}\:{x}=\mathrm{3} \\ $$ $${x}+\frac{\mathrm{9}}{{x}}\leqslant−\mathrm{2}\sqrt{\mathrm{9}}=−\mathrm{6} \\ $$ $$\Rightarrow{f}\left({x}\right)_{{min}} =\frac{\mathrm{1}}{−\mathrm{6}−\mathrm{5}}=−\frac{\mathrm{1}}{\mathrm{11}}\:{when}\:{x}=−\mathrm{3} \\ $$

Answered by 1549442205PVT last updated on 06/Jun/21

put A=(x/(x^2 −5x+9))⇔Ax^2 −(5A+1)x+9A=0  This quadratc  equation always has  roots so Δ=(5A+1)^2 −36A^2 ≥0  −11A^2 +10A+1≥0⇔(1+11A)(1−A)≥0  ⇔((−1)/(11))≤A≤1.Hence,A_(min) =((−1)/(11)) when x=−3  A_(max) =2 when x=3

$$\mathrm{put}\:\mathrm{A}=\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{2}} −\mathrm{5x}+\mathrm{9}}\Leftrightarrow\mathrm{Ax}^{\mathrm{2}} −\left(\mathrm{5A}+\mathrm{1}\right)\mathrm{x}+\mathrm{9A}=\mathrm{0} \\ $$ $$\mathrm{This}\:\mathrm{quadratc}\:\:\mathrm{equation}\:\mathrm{always}\:\mathrm{has} \\ $$ $$\mathrm{roots}\:\mathrm{so}\:\Delta=\left(\mathrm{5A}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{36A}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$ $$−\mathrm{11A}^{\mathrm{2}} +\mathrm{10A}+\mathrm{1}\geqslant\mathrm{0}\Leftrightarrow\left(\mathrm{1}+\mathrm{11A}\right)\left(\mathrm{1}−\mathrm{A}\right)\geqslant\mathrm{0} \\ $$ $$\Leftrightarrow\frac{−\mathrm{1}}{\mathrm{11}}\leqslant\mathrm{A}\leqslant\mathrm{1}.\mathrm{Hence},\mathrm{A}_{\mathrm{min}} =\frac{−\mathrm{1}}{\mathrm{11}}\:\mathrm{when}\:\mathrm{x}=−\mathrm{3} \\ $$ $$\mathrm{A}_{\mathrm{max}} =\mathrm{2}\:\mathrm{when}\:\mathrm{x}=\mathrm{3} \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com