Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 141328 by mnjuly1970 last updated on 17/May/21

...... Evaluate:       F :=Σ_(n=2) ^∞ (((−1)^n ζ(n))/(n+1)) =?  .......

$$......\:{Evaluate}: \\ $$$$\:\:\:\:\:\mathscr{F}\::=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right)}{{n}+\mathrm{1}}\:=? \\ $$$$....... \\ $$

Answered by Dwaipayan Shikari last updated on 17/May/21

ψ(z+1)=−γ+Σ_(n=2) ^∞ (−1)^n ζ(n)z^(n−1)   ∫_0 ^1 zψ(z+1)=−∫_0 ^1 γzdz+Σ_(n=2) ^∞ (((−1)^n ζ(n))/(n+1))  ⇒[logΓ(z+1)]_0 ^1 −∫_0 ^1 log(Γ(z+1))+(γ/2)=Σ_(n=2) ^∞ (−1)^n ((ζ(n))/(n+1))  ⇒∫_0 ^1 log(Γ(z))+log(z)dz+(γ/2)=Σ_(n=2) ^∞ (((−1)^n )/(n+1))ζ(n)  −((log(2π))/2)+1+(γ/2)=Σ_(n=2) ^∞ (((−1)^n )/(n+1))ζ(n)=log((e^(1+(γ/2)) /( (√(2π)))))

$$\psi\left({z}+\mathrm{1}\right)=−\gamma+\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right){z}^{{n}−\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {z}\psi\left({z}+\mathrm{1}\right)=−\int_{\mathrm{0}} ^{\mathrm{1}} \gamma{zdz}+\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right)}{{n}+\mathrm{1}} \\ $$$$\Rightarrow\left[{log}\Gamma\left({z}+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left(\Gamma\left({z}+\mathrm{1}\right)\right)+\frac{\gamma}{\mathrm{2}}=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\zeta\left({n}\right)}{{n}+\mathrm{1}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left(\Gamma\left({z}\right)\right)+{log}\left({z}\right){dz}+\frac{\gamma}{\mathrm{2}}=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\zeta\left({n}\right) \\ $$$$−\frac{{log}\left(\mathrm{2}\pi\right)}{\mathrm{2}}+\mathrm{1}+\frac{\gamma}{\mathrm{2}}=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\zeta\left({n}\right)={log}\left(\frac{{e}^{\mathrm{1}+\frac{\gamma}{\mathrm{2}}} }{\:\sqrt{\mathrm{2}\pi}}\right) \\ $$

Commented by mnjuly1970 last updated on 17/May/21

 grateful mr payan.  very nice....thank you for your  constan cooperation...

$$\:{grateful}\:{mr}\:{payan}. \\ $$$${very}\:{nice}....{thank}\:{you}\:{for}\:{your} \\ $$$${constan}\:{cooperation}... \\ $$

Commented by Dwaipayan Shikari last updated on 17/May/21

Thanks sir

$${Thanks}\:{sir} \\ $$

Answered by mnjuly1970 last updated on 17/May/21

  ln(Γ(x+1))=−γx+Σ_(n=2) ^∞ (((−1)^n x^n ζ(n))/n)     diff both sides respect to ”x”     ψ(x+1)=−γ+Σ(−1)^n x^(n−1) ζ(n)  xψ(x+1)=−γx+Σ_(n=2) ^∞ (−1)^n x^n ζ(n)   ∫_0 ^1 x((1/x)+ψ(x))dx=−(γ^2 /2)+Σ(−1)^n ζ(n).(1/(n+1))    1+[xln(Γ(x))]_0 ^1 −∫_0 ^1 ln(Γ(x))dx=((−γ^2 )/2)+F  1+lim_(x→0^+ ) [(xln(Γ(x)))=^? 0]−(1/2)ln(2π))+(γ^2 /2)=F    F:=1+(γ^2 /2)−ln(√(2π)) .......✓✓     ? ::  lim_(x→0^+ ) (xln(((Γ(x+1))/x)))=           =lim_(x→0^+ ) xln(Γ(x+1))−lim_(x→0^+ ) xln(x)    =0

$$\:\:{ln}\left(\Gamma\left({x}+\mathrm{1}\right)\right)=−\gamma{x}+\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \zeta\left({n}\right)}{{n}} \\ $$$$\:\:\:{diff}\:{both}\:{sides}\:{respect}\:{to}\:''{x}'' \\ $$$$\:\:\:\psi\left({x}+\mathrm{1}\right)=−\gamma+\Sigma\left(−\mathrm{1}\right)^{{n}} {x}^{{n}−\mathrm{1}} \zeta\left({n}\right) \\ $$$${x}\psi\left({x}+\mathrm{1}\right)=−\gamma{x}+\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \zeta\left({n}\right) \\ $$$$\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left(\frac{\mathrm{1}}{{x}}+\psi\left({x}\right)\right){dx}=−\frac{\gamma^{\mathrm{2}} }{\mathrm{2}}+\Sigma\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right).\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$$$\:\:\mathrm{1}+\left[{xln}\left(\Gamma\left({x}\right)\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx}=\frac{−\gamma^{\mathrm{2}} }{\mathrm{2}}+\mathscr{F} \\ $$$$\left.\mathrm{1}+{lim}_{{x}\rightarrow\mathrm{0}^{+} } \left[\left({xln}\left(\Gamma\left({x}\right)\right)\right)\overset{?} {=}\mathrm{0}\right]−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\pi\right)\right)+\frac{\gamma^{\mathrm{2}} }{\mathrm{2}}=\mathscr{F} \\ $$$$\:\:\mathscr{F}:=\mathrm{1}+\frac{\gamma^{\mathrm{2}} }{\mathrm{2}}−{ln}\sqrt{\mathrm{2}\pi}\:.......\checkmark\checkmark \\ $$$$\:\:\:?\:::\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \left({xln}\left(\frac{\Gamma\left({x}+\mathrm{1}\right)}{{x}}\right)\right)= \\ $$$$\:\:\:\:\:\:\:\:\:={lim}_{{x}\rightarrow\mathrm{0}^{+} } {xln}\left(\Gamma\left({x}+\mathrm{1}\right)\right)−{lim}_{{x}\rightarrow\mathrm{0}^{+} } {xln}\left({x}\right) \\ $$$$\:\:=\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com